Quantifier elimination by dependency sequents

We consider the problem of existential quantifier elimination for Boolean CNF formulas. We present a new method for solving this problem called derivation of dependency-sequents (DDS). A dependency-sequent (D-sequent) is used to record that a set of variables is redundant under a partial assignment. We introduce the join operation that produces new D-sequents from existing ones. We show that DDS is compositional, i.e., if our input formula is a conjunction of independent formulas, DDS automatically recognizes and exploits this information. We introduce an algorithm based on DDS and present experimental results demonstrating its potential.

[1]  Stephan Merz,et al.  Model Checking , 2000 .

[2]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[3]  Randal E. Bryant,et al.  Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.

[4]  Armin Biere,et al.  Combining Decision Diagrams and SAT Procedures for Efficient Symbolic Model Checking , 2000, CAV.

[5]  Armin Biere,et al.  PicoSAT Essentials , 2008, J. Satisf. Boolean Model. Comput..

[6]  Jie-Hong Roland Jiang,et al.  Quantifier Elimination via Functional Composition , 2009, CAV.

[7]  Fabio Somenzi,et al.  Prime clauses for fast enumeration of satisfying assignments to Boolean circuits , 2005, Proceedings. 42nd Design Automation Conference, 2005..

[8]  Aaron R. Bradley,et al.  SAT-Based Model Checking without Unrolling , 2011, VMCAI.

[9]  Eugene Goldberg,et al.  Quantifier elimination via clause redundancy , 2013, 2013 Formal Methods in Computer-Aided Design.

[10]  Robert K. Brayton,et al.  Using problem symmetry in search based satisfiability algorithms , 2002, Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition.

[11]  Kenneth L. McMillan,et al.  Applying SAT Methods in Unbounded Symbolic Model Checking , 2002, CAV.

[12]  Parosh Aziz Abdulla,et al.  Symbolic Reachability Analysis Based on SAT-Solvers , 2000, TACAS.

[13]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching Time Temporal Logic , 2008, 25 Years of Model Checking.

[14]  David A. Basin,et al.  QUBOS: Deciding Quantified Boolean Logic Using Propositional Satisfiability Solvers , 2002, FMCAD.

[15]  Adnan Darwiche,et al.  Decomposable negation normal form , 2001, JACM.

[16]  Eugene Goldberg,et al.  SAT-Solving Based on Boundary Point Elimination , 2010, Haifa Verification Conference.

[17]  Armin Biere,et al.  Resolve and Expand , 2004, SAT.

[18]  Aarti Gupta,et al.  Efficient SAT-based unbounded symbolic model checking using circuit cofactoring , 2004, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004..

[19]  Malay K. Ganai Propelling SAT and SAT-based BMC using careset , 2010, Formal Methods in Computer Aided Design.

[20]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[21]  Kenneth L. McMillan,et al.  Symbolic model checking , 1992 .

[22]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[23]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[24]  Sharad Malik,et al.  Partition-based decision heuristics for image computation using SAT and BDDs , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[25]  Srinivas Devadas,et al.  Simulation vector generation from HDL descriptions for observability-enhanced statement coverage , 1999, DAC '99.

[26]  Eugene Goldberg,et al.  Removal of Quantifiers by Elimination of Boundary Points , 2012, ArXiv.

[27]  Jörg Brauer,et al.  Existential Quantification as Incremental SAT , 2011, CAV.

[28]  Kenneth L. McMillan,et al.  Interpolation and SAT-Based Model Checking , 2003, CAV.

[29]  Oliver Kullmann,et al.  New Methods for 3-SAT Decision and Worst-case Analysis , 1999, Theor. Comput. Sci..

[30]  Armin Biere,et al.  A satisfiability procedure for quantified Boolean formulae , 2003, Discret. Appl. Math..

[31]  Armin Biere,et al.  Blocked Clause Elimination for QBF , 2011, CADE.

[32]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[33]  Sérgio Vale Aguiar Campos,et al.  Symbolic Model Checking , 1993, CAV.

[34]  Helmut Veith,et al.  Using Combinatorial Optimization Methods for Quantification Scheduling , 2001, CHARME.

[35]  Eugene Goldberg Boundary Points and Resolution , 2009, SAT.