Quantum-dot infrared photodetectors: Status and outlook
暂无分享,去创建一个
[1] Jamie D. Phillips,et al. Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .
[2] R. J. Keyes. Optical and Infrared Detectors , 1977 .
[3] Nikolai N. Ledentsov,et al. Quantum dot heterostructures , 1999 .
[4] M. Razeghi,et al. Handbook of Infrared Detection Technologies , 2002 .
[5] W. Parker,et al. Photoexcitation of Quasiparticles in Nonequilibrium Superconductors , 1972 .
[6] W. A. Beck,et al. Photoconductive gain and generation‐recombination noise in multiple‐quantum‐well infrared detectors , 1993 .
[7] Pallab Bhattacharya,et al. High-performance mid-infrared quantum dot infrared photodetectors , 2005 .
[8] C. R. Helms,et al. A diffusion model for the internal photoresponse of PtSi/p‐Si Schottky barrier diodes , 1989 .
[9] Christoph H. Grein,et al. Theoretical performance of very long wavelength InAs/InxGa1−xSb superlattice based infrared detectors , 1994 .
[10] Yu. G. Musikhin,et al. Electronic structure of self-assembled InAs quantum dots in GaAs matrix , 1998 .
[11] Manijeh Razeghi,et al. Narrow-gap semiconductor photodiodes , 2000, Photonics West.
[12] S. Krishna,et al. 640$\,\times\,$512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array , 2007, IEEE Journal of Quantum Electronics.
[13] Peter R. Bratt,et al. Chapter 2 Impurity Germanium and Silicon Infrared Detectors , 1977 .
[14] C. T. Elliott,et al. Non-equilibrium devices in HgCdTe , 1997 .
[15] H. Sakaki,et al. Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .
[16] S. Chakrabarti,et al. Contribution of field-assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared photodetectors , 2004, IEEE Photonics Technology Letters.
[17] Joe C. Campbell,et al. High detectivity InAs quantum dot infrared photodetectors , 2004 .
[18] Hui C. Liu,et al. Noise gain and operating temperature of quantum well infrared photodetectors , 1992 .
[19] E. Towe,et al. Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.
[20] Jerry R. Meyer,et al. AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .
[21] B. Pajot,et al. Metallurgy and physical properties of mercury-doped germanium related to the performances of the infrared detector☆ , 1967 .
[22] Joe C. Campbell,et al. Noise and photoconductive gain in InAs quantum-dot infrared photodetectors , 2003 .
[23] D. Long,et al. Photovoltaic and Photoconductive Infrared Detectors , 1977 .
[24] Hongtao Jiang,et al. Self-assembled semiconductor structures: electronic and optoelectronic properties , 1998 .
[25] Andrew G. Glen,et al. APPL , 2001 .
[26] M. A. Kinch,et al. Recombination mechanisms in 8–14‐μ HgCdTe , 1973 .
[27] Darryl L. Smith,et al. Proposal for strained type II superlattice infrared detectors , 1987 .
[28] Lam,et al. Carrier thermalization in sub-three-dimensional electronic systems: Fundamental limits on modulation bandwidth in semiconductor lasers. , 1994, Physical review. B, Condensed matter.
[29] Antoni Rogalski,et al. High-Operating-Temperature Infrared Photodetectors , 2007 .
[30] Z. R. Wasilewski,et al. Tunnel current in quantum dot infrared photodetectors , 2003 .
[31] P. Bhattacharya,et al. Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .
[32] Antoni Rogalski,et al. Uncooled long wavelength infrared photon detectors , 2004 .
[33] Sikorski,et al. Spectroscopy of electronic states in InSb quantum dots. , 1989, Physical review letters.
[34] B. N. Taylor,et al. Measurement of Recombination Lifetimes in Superconductors , 1967 .
[35] Yozo Shimada,et al. Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .
[36] J. Bajaj,et al. Advances in large-area Hg1−xCdxTe photovoltaic detectors for remote-sensing applications , 2002 .
[37] Antoni Rogalski,et al. Quantum well photoconductors in infrared detector technology , 2003 .
[38] T. N. Casselman,et al. Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .
[39] P. Norton. HgCdTe Infrared Detectors , 2002 .
[40] Jamie D. Phillips,et al. Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .
[41] S. Krishna. Quantum dots-in-a-well infrared photodetectors , 2005 .
[42] Wei Zhang,et al. High-detectivity quantum-dot infrared photodetectors grown by metalorganic chemical-vapor deposition , 2006 .
[43] Antoni Rogalski,et al. HgCdTe infrared detector material: history, status and outlook , 2005 .
[44] W. Gawron,et al. Ultimate performance of infrared photodetectors and figure of merit of detector material , 1997 .
[45] Wei Zhang,et al. High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature , 2007 .
[46] Andreas Stintz,et al. Influence of Si doping on the performance of quantum dots-in-well photodetectors , 2006 .
[47] Jarrod Vaillancourt,et al. Temperature-dependent photoresponsivity and high-temperature (190K) operation of a quantum dot infrared photodetector , 2007 .
[48] P. Petersen. Chapter 4 Auger Recombination in Mercury Cadmium Telluride , 1981 .
[49] T. S. Moss,et al. Handbook on semiconductors , 1980 .
[50] Grambow,et al. Nonlocal dynamic response and level crossings in quantum-dot structures. , 1990, Physical review letters.
[51] Pallab Bhattacharya,et al. Research propels quantum dots forward , 2005 .
[52] Victor Ryzhii,et al. Physical model and analysis of quantum dot infrared photodetectors with blocking layer , 2001 .
[53] Meimei Z. Tidrow,et al. High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition , 2004 .
[54] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[55] Roger J. Malik,et al. High‐detectivity D*=1.0×1010 cm √H̄z̄/W GaAs/AlGaAs multiquantum well λ=8.3 μm infrared detector , 1988 .
[56] Christoph H. Grein,et al. Minority carrier lifetimes in ideal InGaSb/InAs superlattices , 1992 .
[57] Robert D. Guenther,et al. Encyclopedia of modern optics , 2005 .
[58] Sanjay Krishna,et al. Two-color focal plane arrays based on self assembled quantum dots in a well heterostructure , 2006 .
[59] Amnon Yariv,et al. Performance limitations of GaAs/AlGaAs infrared superlattices , 1989 .
[60] H. Ehrenreich,et al. Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .
[61] Hsien-Shun Wu,et al. Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .
[62] Raphael Tsu,et al. Superlattice and negative differential conductivity in semiconductors , 1970 .
[63] Peter N. J. Dennis,et al. Infrared Detectors , 1980, Other Conferences.
[64] N. Sclar,et al. Properties of doped silicon and Germanium infrared detectors , 1984 .
[65] S. Denbaars,et al. Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .
[66] S. Gunapala,et al. Chapter 3 – GaAs/AIGaAs based quantum well infrared photodetector focal plane arrays , 2002 .
[67] A. Krier. Mid-infrared Semiconductor Optoelectronics , 2006 .
[68] G. Ariyawansa,et al. A resonant tunneling quantum-dot infrared photodetector , 2005, IEEE Journal of Quantum Electronics.
[69] Michael A. Kinch. Fundamental physics of infrared detector materials , 2000 .
[70] P. Bhattacharya,et al. Wavelength and polarization selective multi-band tunnelling quantum dot detectors , 2007 .