Quantum-dot infrared photodetectors: Status and outlook

Abstract This paper reviews the present status and possible future developments of quantum-dot infrared photodetectors (QDIPs). At the beginning the paper summarizes the fundamental properties of QDIPs. Next, an emphasis is put on their potential developments. Investigations of the performance of QDIPs as compared to other types of infrared photodetectors are presented. A model is based on fundamental performance limitations enabling a direct comparison between different infrared material technologies. It is assumed that the performance is due to thermal generation in the active detector's region. In comparative studies, the HgCdTe photodiodes, quantum well infrared photodetectors (QWIPs), type-II superlattice photodiodes, Schottky barrier photoemissive detectors, doped silicon detectors, and high-temperature superconductor detectors are considered. Theoretical predictions indicate that only type-II superlattice photodiodes and QDIPs are expected to compete with HgCdTe photodiodes. QDIPs theoretically have several advantages compared with QWIPs including the normal incidence response, lower dark current, higher operating temperature, higher responsivity and detectivity. The operating temperature for HgCdTe detectors is higher than for other types of photon detectors. It is also shown, that BLIP temperature of QDIP strongly depends on nonuniformity in the QD size. Comparison of QDIP performance with HgCdTe detectors gives clear evidence that the QDIP is suitable for high operation temperature. It can be expected that improvement in technology and design of QDIP detectors will make it possible to achieve both high sensitivity and fast response useful for practical application at room temperature FPAs. Comparison of theoretically predicted and experimental data indicates that, as so far, the QDIP devices have not fully demonstrated their potential advantages and are expected to posses the fundamental ability to achieve higher detector performance. Poor QDIP performance is generally linked to nonoptimal band structure and controlling the QDs size and density (nonuniformity in QD size).

[1]  Jamie D. Phillips,et al.  Evaluation of the fundamental properties of quantum dot infrared detectors , 2002 .

[2]  R. J. Keyes Optical and Infrared Detectors , 1977 .

[3]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[4]  M. Razeghi,et al.  Handbook of Infrared Detection Technologies , 2002 .

[5]  W. Parker,et al.  Photoexcitation of Quasiparticles in Nonequilibrium Superconductors , 1972 .

[6]  W. A. Beck,et al.  Photoconductive gain and generation‐recombination noise in multiple‐quantum‐well infrared detectors , 1993 .

[7]  Pallab Bhattacharya,et al.  High-performance mid-infrared quantum dot infrared photodetectors , 2005 .

[8]  C. R. Helms,et al.  A diffusion model for the internal photoresponse of PtSi/p‐Si Schottky barrier diodes , 1989 .

[9]  Christoph H. Grein,et al.  Theoretical performance of very long wavelength InAs/InxGa1−xSb superlattice based infrared detectors , 1994 .

[10]  Yu. G. Musikhin,et al.  Electronic structure of self-assembled InAs quantum dots in GaAs matrix , 1998 .

[11]  Manijeh Razeghi,et al.  Narrow-gap semiconductor photodiodes , 2000, Photonics West.

[12]  S. Krishna,et al.  640$\,\times\,$512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array , 2007, IEEE Journal of Quantum Electronics.

[13]  Peter R. Bratt,et al.  Chapter 2 Impurity Germanium and Silicon Infrared Detectors , 1977 .

[14]  C. T. Elliott,et al.  Non-equilibrium devices in HgCdTe , 1997 .

[15]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[16]  S. Chakrabarti,et al.  Contribution of field-assisted tunneling emission to dark current in InAs-GaAs quantum dot infrared photodetectors , 2004, IEEE Photonics Technology Letters.

[17]  Joe C. Campbell,et al.  High detectivity InAs quantum dot infrared photodetectors , 2004 .

[18]  Hui C. Liu,et al.  Noise gain and operating temperature of quantum well infrared photodetectors , 1992 .

[19]  E. Towe,et al.  Semiconductor quantum-dot nanostructures: Their application in a new class of infrared photodetectors , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Jerry R. Meyer,et al.  AUGER LIFETIME ENHANCEMENT IN INAS-GA1-XINXSB SUPERLATTICES , 1994 .

[21]  B. Pajot,et al.  Metallurgy and physical properties of mercury-doped germanium related to the performances of the infrared detector☆ , 1967 .

[22]  Joe C. Campbell,et al.  Noise and photoconductive gain in InAs quantum-dot infrared photodetectors , 2003 .

[23]  D. Long,et al.  Photovoltaic and Photoconductive Infrared Detectors , 1977 .

[24]  Hongtao Jiang,et al.  Self-assembled semiconductor structures: electronic and optoelectronic properties , 1998 .

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  M. A. Kinch,et al.  Recombination mechanisms in 8–14‐μ HgCdTe , 1973 .

[27]  Darryl L. Smith,et al.  Proposal for strained type II superlattice infrared detectors , 1987 .

[28]  Lam,et al.  Carrier thermalization in sub-three-dimensional electronic systems: Fundamental limits on modulation bandwidth in semiconductor lasers. , 1994, Physical review. B, Condensed matter.

[29]  Antoni Rogalski,et al.  High-Operating-Temperature Infrared Photodetectors , 2007 .

[30]  Z. R. Wasilewski,et al.  Tunnel current in quantum dot infrared photodetectors , 2003 .

[31]  P. Bhattacharya,et al.  Far-infrared photoconductivity in self-organized InAs quantum dots , 1998 .

[32]  Antoni Rogalski,et al.  Uncooled long wavelength infrared photon detectors , 2004 .

[33]  Sikorski,et al.  Spectroscopy of electronic states in InSb quantum dots. , 1989, Physical review letters.

[34]  B. N. Taylor,et al.  Measurement of Recombination Lifetimes in Superconductors , 1967 .

[35]  Yozo Shimada,et al.  Bound-to-continuum intersubband photoconductivity of self-assembled InAs quantum dots in modulation-doped heterostructures , 1999 .

[36]  J. Bajaj,et al.  Advances in large-area Hg1−xCdxTe photovoltaic detectors for remote-sensing applications , 2002 .

[37]  Antoni Rogalski,et al.  Quantum well photoconductors in infrared detector technology , 2003 .

[38]  T. N. Casselman,et al.  Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .

[39]  P. Norton HgCdTe Infrared Detectors , 2002 .

[40]  Jamie D. Phillips,et al.  Self-assembled InAs-GaAs quantum-dot intersubband detectors , 1999 .

[41]  S. Krishna Quantum dots-in-a-well infrared photodetectors , 2005 .

[42]  Wei Zhang,et al.  High-detectivity quantum-dot infrared photodetectors grown by metalorganic chemical-vapor deposition , 2006 .

[43]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[44]  W. Gawron,et al.  Ultimate performance of infrared photodetectors and figure of merit of detector material , 1997 .

[45]  Wei Zhang,et al.  High-performance InAs quantum-dot infrared photodetectors grown on InP substrate operating at room temperature , 2007 .

[46]  Andreas Stintz,et al.  Influence of Si doping on the performance of quantum dots-in-well photodetectors , 2006 .

[47]  Jarrod Vaillancourt,et al.  Temperature-dependent photoresponsivity and high-temperature (190K) operation of a quantum dot infrared photodetector , 2007 .

[48]  P. Petersen Chapter 4 Auger Recombination in Mercury Cadmium Telluride , 1981 .

[49]  T. S. Moss,et al.  Handbook on semiconductors , 1980 .

[50]  Grambow,et al.  Nonlocal dynamic response and level crossings in quantum-dot structures. , 1990, Physical review letters.

[51]  Pallab Bhattacharya,et al.  Research propels quantum dots forward , 2005 .

[52]  Victor Ryzhii,et al.  Physical model and analysis of quantum dot infrared photodetectors with blocking layer , 2001 .

[53]  Meimei Z. Tidrow,et al.  High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition , 2004 .

[54]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[55]  Roger J. Malik,et al.  High‐detectivity D*=1.0×1010 cm √H̄z̄/W GaAs/AlGaAs multiquantum well λ=8.3 μm infrared detector , 1988 .

[56]  Christoph H. Grein,et al.  Minority carrier lifetimes in ideal InGaSb/InAs superlattices , 1992 .

[57]  Robert D. Guenther,et al.  Encyclopedia of modern optics , 2005 .

[58]  Sanjay Krishna,et al.  Two-color focal plane arrays based on self assembled quantum dots in a well heterostructure , 2006 .

[59]  Amnon Yariv,et al.  Performance limitations of GaAs/AlGaAs infrared superlattices , 1989 .

[60]  H. Ehrenreich,et al.  Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes , 1995 .

[61]  Hsien-Shun Wu,et al.  Low dark current quantum-dot infrared photodetectors with an AlGaAs current blocking layer , 2001 .

[62]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[63]  Peter N. J. Dennis,et al.  Infrared Detectors , 1980, Other Conferences.

[64]  N. Sclar,et al.  Properties of doped silicon and Germanium infrared detectors , 1984 .

[65]  S. Denbaars,et al.  Direct formation of quantum‐sized dots from uniform coherent islands of InGaAs on GaAs surfaces , 1993 .

[66]  S. Gunapala,et al.  Chapter 3 – GaAs/AIGaAs based quantum well infrared photodetector focal plane arrays , 2002 .

[67]  A. Krier Mid-infrared Semiconductor Optoelectronics , 2006 .

[68]  G. Ariyawansa,et al.  A resonant tunneling quantum-dot infrared photodetector , 2005, IEEE Journal of Quantum Electronics.

[69]  Michael A. Kinch Fundamental physics of infrared detector materials , 2000 .

[70]  P. Bhattacharya,et al.  Wavelength and polarization selective multi-band tunnelling quantum dot detectors , 2007 .