IDR Explained
暂无分享,去创建一个
[1] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .
[2] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[3] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[4] E. Stiefel,et al. Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme , 1955 .
[5] J. Reid. Large Sparse Sets of Linear Equations , 1973 .
[6] P. K. W. Vinsome,et al. Orthomin, an Iterative Method for Solving Sparse Sets of Simultaneous Linear Equations , 1976 .
[7] R. Fletcher. Conjugate gradient methods for indefinite systems , 1976 .
[8] P. Wesseling,et al. Numerical experiments with a multiple grid and a preconditioned Lanczos type method , 1980 .
[9] O. Axelsson. Conjugate gradient type methods for unsymmetric and inconsistent systems of linear equations , 1980 .
[10] Kang C. Jea,et al. Generalized conjugate-gradient acceleration of nonsymmetrizable iterative methods , 1980 .
[11] D. O’Leary. The block conjugate gradient algorithm and related methods , 1980 .
[12] M. Wodzicki. Lecture Notes in Math , 1984 .
[13] Y. Saad,et al. Conjugate gradient-like algorithms for solving nonsymmetric linear systems , 1985 .
[14] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[15] P. Sonneveld. CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems , 1989 .
[16] Martin H. Gutknecht,et al. Stationary and almost stationary iterative (k, l)-step methods for linear and nonlinear systems of equations , 1989 .
[17] Henk A. van der Vorst,et al. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..
[18] G. Golub,et al. Iterative solution of linear systems , 1991, Acta Numerica.
[19] Martin H. Gutknecht,et al. Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..
[20] D. R. Fokkema,et al. BICGSTAB( L ) FOR LINEAR EQUATIONS INVOLVING UNSYMMETRIC MATRICES WITH COMPLEX , 1993 .
[21] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[22] H. V. D. Vorst,et al. An overview of approaches for the stable computation of hybrid BiCG methods , 1995 .
[23] Valeria Simoncini. A Stabilized QMR Version of Block BiCG , 1997 .
[24] R. Freund,et al. A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides , 1997 .
[25] A. Greenbaum. Estimating the Attainable Accuracy of Recursively Computed Residual Methods , 1997, SIAM J. Matrix Anal. Appl..
[26] Martin H. Gutknecht,et al. Lanczos-type solvers for nonsymmetric linear systems of equations , 1997, Acta Numerica.
[27] Accuracy of two three-term and three two-term recurrences for Krylov space solvers , 1999 .
[28] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[29] Tony F. Chan,et al. ML(k)BiCGSTAB: A BiCGSTAB Variant Based on Multiple Lanczos Starting Vectors , 1999, SIAM J. Sci. Comput..
[30] Roland W. Freund,et al. A Lanczos-type method for multiple starting vectors , 2000, Math. Comput..
[31] Martin H. Gutknecht,et al. Look-Ahead Procedures for Lanczos-Type Product Methods Based on Three-Term Lanczos Recurrences , 2000, SIAM J. Matrix Anal. Appl..
[32] Zdenek Strakos,et al. Accuracy of Two Three-term and Three Two-term Recurrences for Krylov Space Solvers , 2000, SIAM J. Matrix Anal. Appl..
[33] Gerard L. G. Sleijpen,et al. BiCGstab(l) and other hybrid Bi-CG methods , 1994, Numerical Algorithms.
[34] Damian Loher. Reliable nonsymmetric block Lanczos algorithms , 2006 .
[35] Gerard L. G. Sleijpen,et al. Bi-CGSTAB as an induced dimension reduction method , 2010 .
[36] Martin B. van Gijzen,et al. IDR(s): A Family of Simple and Fast Algorithms for Solving Large Nonsymmetric Systems of Linear Equations , 2008, SIAM J. Sci. Comput..
[37] Masaaki Sugihara,et al. IDR(s) with Higher-Order Stabilization Polynomials , 2009 .
[38] Masaaki Sugihara,et al. GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials , 2010, J. Comput. Appl. Math..
[39] Gerard L. G. Sleijpen,et al. Exploiting BiCGstab(ℓ) Strategies to Induce Dimension Reduction , 2010, SIAM J. Sci. Comput..
[40] M. B. Van Gijzen,et al. An elegant IDR(s) variant that efficiently exploits bi-orthogonality properties , 2010 .