Système Coopératif de Classification Floue Possibiliste avec Rejet d'Ambiguïté « Application à la segmentation d'images IRM »
暂无分享,去创建一个
[1] Jefferey A. Shufelt,et al. Performance Evaluation and Analysis of Monocular Building Extraction From Aerial Imagery , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[2] Demetri Terzopoulos,et al. Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..
[3] Laurence Germond. Trois principes de coopération pour la segmentation en imagerie de résonnance magnétique cérébrale. (Three principles of cooperation for the segmentation of magnetic resonance images of the brain) , 1999 .
[4] J H Simon,et al. Quantitation of grey matter, white matter, and cerebrospinal fluid from spin-echo magnetic resonance images using an artificial neural network technique. , 1994, Medical physics.
[5] Akshay K. Singh,et al. Deformable models in medical image analysis , 1996, Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis.
[6] Ron Kikinis,et al. Markov random field segmentation of brain MR images , 1997, IEEE Transactions on Medical Imaging.
[7] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[8] James M. Keller,et al. The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..
[9] L. Zadeh. Fuzzy sets as a basis for a theory of possibility , 1999 .
[10] Rachid Deriche,et al. Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.
[11] W. Peizhuang. Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .