Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites

[1]  A. Gerson,et al.  Pyrite (FeS2) oxidation: A sub-micron synchrotron investigation of the initial steps , 2011 .

[2]  D. Strongin,et al.  Surface reactivity of pyrite and related sulfides , 2009 .

[3]  W. Skinner,et al.  Ab initio and XPS studies of pyrite (1 0 0) surface states , 2006 .

[4]  W. Skinner,et al.  Ab initio and x-ray photoemission spectroscopy study of the bulk and surface electronic structure of pyrite (100) with implications for reactivity , 2005 .

[5]  B. Bostick,et al.  Initial oxidation of fractured surfaces of FeS2(100) by molecular oxygen, water vapor, and air , 2004 .

[6]  H. Nesbitt,et al.  Identification of pyrite valence band contributions using synchrotron-excited X-ray photoelectron spectroscopy , 2004 .

[7]  K. Laajalehto,et al.  XPS study of the sulphur 2p spectra of pyrite , 2003 .

[8]  K. Laajalehto,et al.  Surface XPS core-level shifts of FeS2 , 2003 .

[9]  M. Schoonen,et al.  A mechanism for the production of hydroxyl radical at surface defect sites on pyrite , 2003 .

[10]  R Hesse,et al.  Unifit 2002—universal analysis software for photoelectron spectra , 2003, Analytical and bioanalytical chemistry.

[11]  H. Hoechst,et al.  Reactivity of surface sites on fractured arsenopyrite (FeAsS) toward oxygen , 2000 .

[12]  H. Nesbitt,et al.  Synchrotron XPS evidence for Fe2+-S and Fe3+-S surface species on pyrite fracture-surfaces, and their 3D electronic states , 2000 .

[13]  K. Rosso,et al.  The interaction of pyrite {100} surfaces with O2 and H2O: Fundamental oxidation mechanisms , 1999 .

[14]  H. Nesbitt,et al.  Incipient oxidation of fractured pyrite surfaces in air , 1998 .

[15]  H. Nesbitt,et al.  Sulfur and iron surface states on fractured pyrite surfaces , 1998 .

[16]  H. Tributsch,et al.  Electronic structure of FeS 2 : The crucial role of electron-lattice interaction , 1998 .

[17]  M. Schoonen,et al.  Photoemission of Adsorbed Xenon, X-ray Photoelectron Spectroscopy, and Temperature-Programmed Desorption Studies of H2O on FeS2(100) , 1998 .

[18]  H. Nesbitt,et al.  X-ray photoelectron spectroscopic study of a pristine pyrite surface reacted with water vapour and air , 1994 .

[19]  W. Jaegermann,et al.  Surface states on cubic d-band semiconductor pyrite (FeS2) , 1994 .

[20]  I. Edmonds Performance of laser cut light deflecting panels in daylighting applications , 1993 .

[21]  W. Jaegermann,et al.  Site Specific Surface Interaction of Electron Donors and Acceptors on FeS2(100) Cleavage Planes , 1991 .

[22]  Lad,et al.  Photoemission study of the valence-band electronic structure in FexO, Fe3O4, and alpha -Fe2O3 single crystals. , 1989, Physical review. B, Condensed matter.

[23]  P. Cartwright,et al.  Core electron binding energies of platinum and rhodium polysulfides , 1988 .

[24]  R. Gillard,et al.  2p electron binding energies for the sulfur atoms in metal polysulfides , 1987 .

[25]  K. Siegbahn ESCA applied to free molecules , 1969 .