Planar plasmonic metamaterial on a thin film with nearly zero thickness

We propose a planar plasmonic metamaterial on thin corrugated metal films in microwave and terahertz frequencies. From theoretical simulation and experiment, we show that spoof surface plasmon polaritons (SPPs) can propagate along a thin metal film by corrugating its edge with periodic array of grooves. We demonstrate that such a planar plasmonic metamaterial can sustain highly localized SPPs along two orthogonal directions. We have designed and simulated a planar ring resonator in the terahertz frequency, and made experiment in the microwave frequency, both of which exhibit excellent performance. The proposed planar plasmonic metamaterials can play important roles in integrated plasmonic circuits and systems.

[1]  Jiangquan Zhang,et al.  Waveguide terahertz time-domain spectroscopy of nanometer water layers. , 2004, Optics letters.

[2]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[3]  J. Wait The ancient and modern history of EM ground-wave propagation , 1998 .

[4]  H. Kurz,et al.  Frequency-dependent characterization of THz Sommerfeld wave propagation on single-wires. , 2005, Optics express.

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  J. Sambles,et al.  Experimental Verification of Designer Surface Plasmons , 2005, Science.

[7]  G. Goubau Surface Waves and Their Application to Transmission Lines , 1950 .

[8]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[9]  T. Ebbesen,et al.  Channel plasmon subwavelength waveguide components including interferometers and ring resonators , 2006, Nature.

[10]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[11]  J. Pendry,et al.  Surfaces with holes in them: new plasmonic metamaterials , 2005 .

[12]  L Martin-Moreno,et al.  Domino plasmons for subwavelength terahertz circuitry. , 2009, Optics express.

[13]  S. Kawata,et al.  Surface-Plasmon Holography with White-Light Illumination , 2011, Science.

[14]  Michael Nagel,et al.  Integrated THz technology for label-free genetic diagnostics , 2002 .

[15]  M. Tani,et al.  Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy , 2004 .

[16]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[17]  Francisco Falcone,et al.  Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms. , 2009, Optics express.

[18]  S. R. Andrews,et al.  Highly confined guiding of terahertz surface plasmon polaritons on structured metal surfaces , 2008 .

[19]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[20]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[21]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[22]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[23]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[24]  Stefan A Maier,et al.  Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires. , 2006, Physical review letters.

[25]  Yujie J. Ding,et al.  Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings , 2010, Proceedings of the National Academy of Sciences.

[26]  Reza Asgari,et al.  Observation of Plasmarons in Quasi-Freestanding Doped Graphene , 2010, Science.

[27]  Daniel M. Mittleman,et al.  Metal wires for terahertz wave guiding , 2004, Nature.

[28]  Nader Engheta,et al.  Transformation Optics Using Graphene , 2011, Science.

[29]  Yu-Chia Tsao,et al.  Cross-point analysis for a multimode fiber sensor based on surface plasmon resonance. , 2005, Optics letters.

[30]  Eloïse Devaux,et al.  Wavelength selective nanophotonic components utilizing channel plasmon polaritons. , 2007, Nano letters.