Adaptive Wavelet Techniques in Numerical Simulation

This chapter highlights recent developments concerning adaptive wavelet methods for time dependent and stationary problems. The first problem class focusses on hyperbolic conservation laws where wavelet concepts exploit sparse representations of the conserved variables. Regarding the second problem class, we begin with matrix compression in the context of boundary integral equations where the key issue is now to obtain sparse representations of (global) operators like singular integral operators in wavelet coordinates. In the remainder of the chapter a new fully adaptive algorithmic paradigm along with some analysis concepts are outlined which, in particular, works for nonlinear problems and where the sparsity of both, functions and operators, is exploited.

[1]  Claudio Canuto,et al.  The wavelet element method. Part I: Construction and analysis. , 1997 .

[2]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[3]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[4]  Siegfried Müller,et al.  Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.

[5]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[6]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods : Basic Concepts and Applications to the Stokes Problem , 2002 .

[7]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..

[8]  Wolfgang Dahmen,et al.  Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..

[9]  A. Harti Discrete multi-resolution analysis and generalized wavelets , 1993 .

[10]  W. Dahmen Some remarks on multiscale transformations, stability, and biorthogonality , 1994 .

[11]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[12]  Wolfgang Dahmen,et al.  Multiscale Methods for Pseudo-Differential Equations on Smooth Closed Manifolds , 1994 .

[13]  Thomas J. R. Hughes,et al.  Encyclopedia of computational mechanics , 2004 .

[14]  CohenAlbert,et al.  Adaptive wavelet methods for elliptic operator equations , 2001 .

[15]  Silvia Bertoluzza An adaptive collocation method based on interpolating wavelets , 1997 .

[16]  A. Harten,et al.  Multiresolution Based on Weighted Averages of the Hat Function I: Linear Reconstruction Techniques , 1998 .

[17]  Wolfgang Dahmen,et al.  Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.

[18]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[19]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[20]  Josef Ballmann,et al.  Development Of A Flow Solver Employing Local Adaptation Based On Multiscale Analysis On B-Spline Gri , 2000 .

[21]  Rob Stevenson,et al.  Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .

[22]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[23]  K AlpertBradley A class of bases in L2 for the sparse representations of integral operators , 1993 .

[24]  Christian Lage,et al.  Wavelet Galerkin algorithms for boundary integral equations , 1997 .

[25]  Wolfgang Dahmen,et al.  Appending boundary conditions by Lagrange multipliers: Analysis of the LBB condition , 2001, Numerische Mathematik.

[26]  Wolfgang Dahmen,et al.  Adaptive application of operators in standard representation , 2006, Adv. Comput. Math..

[27]  W. Hackbusch,et al.  On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .

[28]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[29]  A. Harten Multiresolution representation of data: a general framework , 1996 .

[30]  Stephan Dahlke,et al.  Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .

[31]  W. Dahmen Multiscale and Wavelet Methods for Operator Equations , 2003 .

[32]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..

[33]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[34]  Angela Kunoth,et al.  Wavelet Methods — Elliptic Boundary Value Problems and Control Problems , 2001 .

[35]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[36]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[37]  Wolfgang Dahmen,et al.  Wavelet Least Squares Methods for Boundary Value Problems , 2001, SIAM J. Numer. Anal..

[38]  Albert Cohen,et al.  Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.

[39]  Joseph E. Pasciak,et al.  A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..

[40]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[41]  R. Kanwal Linear Integral Equations , 1925, Nature.

[42]  H. Harbrecht,et al.  Wavelet Galerkin Schemes for 2D-BEM , 2001 .

[43]  Ronald A. DeVore,et al.  Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.

[44]  R. DeVore,et al.  Besov regularity for elliptic boundary value problems , 1997 .

[45]  Angela Kunoth,et al.  Multilevel preconditioning — Appending boundary conditions by Lagrange multipliers , 1995, Adv. Comput. Math..

[46]  Ronald A. DeVore,et al.  Maximal functions measuring smoothness , 1984 .

[47]  Christian Lage,et al.  Rapid solution of first kind boundary integral equations in R3 , 2003 .

[48]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .

[49]  Reinhold Schneider,et al.  Multiwavelets for Second-Kind Integral Equations , 1997 .

[50]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[51]  Albert Cohen,et al.  Wavelet methods in numerical analysis , 2000 .

[52]  Wolfgang Dahmen,et al.  Composite wavelet bases for operator equations , 1999, Math. Comput..

[53]  Christoph Schwab,et al.  Wavelet approximations for first kind boundary integral equations on polygons , 1996 .

[54]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[55]  Y. Maday,et al.  ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .

[56]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997, Numer. Linear Algebra Appl..

[57]  Reinhard H Stephan Dahlke Adaptive Wavelet Methods for Saddle Point Problems , 1999 .

[58]  R. DeVore,et al.  Interpolation of Besov-Spaces , 1988 .

[59]  Francesc Aràndiga,et al.  Multiresolution Based on Weighted Averages of the Hat Function II: Nonlinear Reconstruction Techniques , 1998, SIAM J. Sci. Comput..

[60]  H. Yserentant Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .

[61]  Wolfgang Dahmen,et al.  Local Decomposition of Refinable Spaces and Wavelets , 1996 .

[62]  Wolfgang Dahmen,et al.  Stable multiscale bases and local error estimation for elliptic problems , 1997 .

[63]  Claudio Canuto,et al.  The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .

[64]  Christoph Schwab,et al.  Fully Discrete Multiscale Galerkin BEM , 1997 .

[65]  Wolfgang Dahmen,et al.  Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..

[66]  Wolfgang Dahmen,et al.  Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.

[67]  Rob Stevenson,et al.  On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..

[68]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[69]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[70]  Wolfgang Dahmen,et al.  Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..

[71]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[72]  Michael Hesse,et al.  H-Adaptive Multiscale Schemes for the Compressible Navier-Stokes Equations -- Polyhedral Discretizat , 2001 .

[73]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[74]  Christian Lage Concept oriented design of numerical software , 1998 .

[75]  Gabriel Wittum,et al.  Boundary Elements: Implementation and Analysis of Advanced Algorithms , 1996 .

[76]  Martin Costabel,et al.  Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .

[77]  W. Dahmen,et al.  Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .

[78]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods for Linear-Quadratic Elliptic Control Problems: Convergence Rates , 2005, SIAM J. Control. Optim..

[79]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[80]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[81]  Panayot S. Vassilevski,et al.  Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .

[82]  Wolfgang Dahmen,et al.  Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..

[83]  Wolfgang Dahmen,et al.  Multiscale methods for pseudo-di erential equations on smooth manifolds , 1995 .

[84]  H. Yserentant On the multi-level splitting of finite element spaces , 1986 .

[85]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[86]  GermanyNumerische Mathematik,et al.  Multilevel Preconditioning , 1992 .

[87]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[88]  R. DeVore,et al.  Compression of wavelet decompositions , 1992 .

[89]  B. Alpert A class of bases in L 2 for the sparse representations of integral operators , 1993 .

[90]  Wolfgang Dahmen,et al.  Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..

[91]  Wolfgang Dahmen,et al.  Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..

[92]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .