Adaptive Wavelet Techniques in Numerical Simulation
暂无分享,去创建一个
[1] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[2] HackbuschW.. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .
[3] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[4] Siegfried Müller,et al. Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.
[5] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[6] Wolfgang Dahmen,et al. Adaptive Wavelet Methods : Basic Concepts and Applications to the Stokes Problem , 2002 .
[7] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..
[8] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..
[9] A. Harti. Discrete multi-resolution analysis and generalized wavelets , 1993 .
[10] W. Dahmen. Some remarks on multiscale transformations, stability, and biorthogonality , 1994 .
[11] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[12] Wolfgang Dahmen,et al. Multiscale Methods for Pseudo-Differential Equations on Smooth Closed Manifolds , 1994 .
[13] Thomas J. R. Hughes,et al. Encyclopedia of computational mechanics , 2004 .
[14] CohenAlbert,et al. Adaptive wavelet methods for elliptic operator equations , 2001 .
[15] Silvia Bertoluzza. An adaptive collocation method based on interpolating wavelets , 1997 .
[16] A. Harten,et al. Multiresolution Based on Weighted Averages of the Hat Function I: Linear Reconstruction Techniques , 1998 .
[17] Wolfgang Dahmen,et al. Nonlinear functionals of wavelet expansions – adaptive reconstruction and fast evaluation , 2000, Numerische Mathematik.
[18] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[19] R. Schneider,et al. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .
[20] Josef Ballmann,et al. Development Of A Flow Solver Employing Local Adaptation Based On Multiscale Analysis On B-Spline Gri , 2000 .
[21] Rob Stevenson,et al. Locally Supported, Piecewise Polynomial Biorthogonal Wavelets on Nonuniform Meshes , 2000 .
[22] R. Coifman,et al. Fast wavelet transforms and numerical algorithms I , 1991 .
[23] K AlpertBradley. A class of bases in L2 for the sparse representations of integral operators , 1993 .
[24] Christian Lage,et al. Wavelet Galerkin algorithms for boundary integral equations , 1997 .
[25] Wolfgang Dahmen,et al. Appending boundary conditions by Lagrange multipliers: Analysis of the LBB condition , 2001, Numerische Mathematik.
[26] Wolfgang Dahmen,et al. Adaptive application of operators in standard representation , 2006, Adv. Comput. Math..
[27] W. Hackbusch,et al. On the fast matrix multiplication in the boundary element method by panel clustering , 1989 .
[28] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[29] A. Harten. Multiresolution representation of data: a general framework , 1996 .
[30] Stephan Dahlke,et al. Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .
[31] W. Dahmen. Multiscale and Wavelet Methods for Operator Equations , 2003 .
[32] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[33] A. Cohen. Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .
[34] Angela Kunoth,et al. Wavelet Methods — Elliptic Boundary Value Problems and Control Problems , 2001 .
[35] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[36] W. Sweldens. The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .
[37] Wolfgang Dahmen,et al. Wavelet Least Squares Methods for Boundary Value Problems , 2001, SIAM J. Numer. Anal..
[38] Albert Cohen,et al. Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.
[39] Joseph E. Pasciak,et al. A least-squares approach based on a discrete minus one inner product for first order systems , 1997, Math. Comput..
[40] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[41] R. Kanwal. Linear Integral Equations , 1925, Nature.
[42] H. Harbrecht,et al. Wavelet Galerkin Schemes for 2D-BEM , 2001 .
[43] Ronald A. DeVore,et al. Fast computation in adaptive tree approximation , 2004, Numerische Mathematik.
[44] R. DeVore,et al. Besov regularity for elliptic boundary value problems , 1997 .
[45] Angela Kunoth,et al. Multilevel preconditioning — Appending boundary conditions by Lagrange multipliers , 1995, Adv. Comput. Math..
[46] Ronald A. DeVore,et al. Maximal functions measuring smoothness , 1984 .
[47] Christian Lage,et al. Rapid solution of first kind boundary integral equations in R3 , 2003 .
[48] Wolfgang Dahmen,et al. Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .
[49] Reinhold Schneider,et al. Multiwavelets for Second-Kind Integral Equations , 1997 .
[50] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[51] Albert Cohen,et al. Wavelet methods in numerical analysis , 2000 .
[52] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[53] Christoph Schwab,et al. Wavelet approximations for first kind boundary integral equations on polygons , 1996 .
[54] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[55] Y. Maday,et al. ADAPTATIVITE DYNAMIQUE SUR BASES D'ONDELETTES POUR L'APPROXIMATION D'EQUATIONS AUX DERIVEES PARTIELLES , 1991 .
[56] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997, Numer. Linear Algebra Appl..
[57] Reinhard H Stephan Dahlke. Adaptive Wavelet Methods for Saddle Point Problems , 1999 .
[58] R. DeVore,et al. Interpolation of Besov-Spaces , 1988 .
[59] Francesc Aràndiga,et al. Multiresolution Based on Weighted Averages of the Hat Function II: Nonlinear Reconstruction Techniques , 1998, SIAM J. Sci. Comput..
[60] H. Yserentant. Erratum. On the Multi-Level Splitting of Finite Element Spaces.(Numer. Math. 49, 379-412 (1986)). , 1986 .
[61] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[62] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[63] Claudio Canuto,et al. The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .
[64] Christoph Schwab,et al. Fully Discrete Multiscale Galerkin BEM , 1997 .
[65] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[66] Wolfgang Dahmen,et al. Multiresolution schemes for conservation laws , 2001, Numerische Mathematik.
[67] Rob Stevenson,et al. On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..
[68] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[69] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[70] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[71] M. Berger,et al. Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .
[72] Michael Hesse,et al. H-Adaptive Multiscale Schemes for the Compressible Navier-Stokes Equations -- Polyhedral Discretizat , 2001 .
[73] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[74] Christian Lage. Concept oriented design of numerical software , 1998 .
[75] Gabriel Wittum,et al. Boundary Elements: Implementation and Analysis of Advanced Algorithms , 1996 .
[76] Martin Costabel,et al. Coupling of finite and boundary element methods for an elastoplastic interface problem , 1990 .
[77] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[78] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Linear-Quadratic Elliptic Control Problems: Convergence Rates , 2005, SIAM J. Control. Optim..
[79] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[80] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[81] Panayot S. Vassilevski,et al. Stabilizing the Hierarchical Basis by Approximate Wavelets, I: Theory , 1997 .
[82] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[83] Wolfgang Dahmen,et al. Multiscale methods for pseudo-di erential equations on smooth manifolds , 1995 .
[84] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[85] Reinhold Schneider,et al. Multiskalen- und Wavelet-Matrixkompression , 1998 .
[86] GermanyNumerische Mathematik,et al. Multilevel Preconditioning , 1992 .
[87] R. Glowinski,et al. Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .
[88] R. DeVore,et al. Compression of wavelet decompositions , 1992 .
[89] B. Alpert. A class of bases in L 2 for the sparse representations of integral operators , 1993 .
[90] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..
[91] Wolfgang Dahmen,et al. Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..
[92] A. Cohen. Numerical Analysis of Wavelet Methods , 2003 .