How Adsorption Affects the Energy Release in an Azothiophene-Based Molecular Solar-Thermal System.

Molecular solar-thermal (MOST) systems combine solar energy conversion, storage, and release within one single molecule. To release the energy, different approaches are applicable, e.g., the electrochemical and the catalytic pathways. While the electrochemical pathway requires catalytically inert electrode materials, the catalytic pathway requires active and selective catalysts. In this work, we studied the catalytic activity and selectivity of graphite(0001), Pt(111), and Au(111) surfaces for the energy release from the MOST system 3-cyanophenylazothiophene along with its adsorption properties. In our study, we combine in situ photochemical IR spectroscopy and density functional theory (DFT). Graphite(0001) is catalytically inactive, shows the weakest reactant-surface interaction, and therefore is ideally suitable for electrochemical triggering. On Pt(111), we observe strong reactant-surface interactions along with moderate catalytic activity and partial decomposition, which limit the applicability of this material. On Au(111), we observe high catalytic activity and high selectivity (>99%). We assign these catalytic properties to the moderate reactant surface interaction, which prevents decomposition but facilitates energy release via a singlet-triplet mechanism.

[1]  J. Libuda,et al.  Tunable Energy Release in a Reversible Molecular Solar Thermal System , 2022, ACS Catalysis.

[2]  A. Görling,et al.  Electrocatalytic Energy Release of Norbornadiene‐Based Molecular Solar Thermal Systems: Tuning the Electrochemical Stability by Molecular Design , 2022, ChemSusChem.

[3]  M. Nielsen,et al.  Photolytic Studies of Norbornadiene Derivatives under High-Intensity Light Conditions. , 2022, The journal of physical chemistry. A.

[4]  A. Dreuw,et al.  Electrochemically Triggered Energy Release from an Azothiophene‐Based Molecular Solar Thermal System , 2022, ChemSusChem.

[5]  Yi‐Ting Chen,et al.  A new approach exploiting thermally activated delayed fluorescence molecules to optimize solar thermal energy storage , 2022, Nature communications.

[6]  A. Görling,et al.  Triggering the Energy Release in Molecular Solar Thermal Systems: Norbornadiene-Functionalized Trioxatriangulen on Au(111) , 2022, Nano Energy.

[7]  P. Erhart,et al.  Storing energy with molecular photoisomers , 2021, Joule.

[8]  M. Fuchter,et al.  Efficient Electrocatalytic Switching of Azoheteroarenes in the Condensed Phases. , 2021, Journal of the American Chemical Society.

[9]  A. Hirsch,et al.  Molecular Solar Thermal Batteries through Combination of Magnetic Nanoparticle Catalysts and Tailored Norbornadiene Photoswitches , 2021, Chemistry.

[10]  K. Moth‐Poulsen,et al.  Engineering of Norbornadiene/Quadricyclane Photoswitches for Molecular Solar Thermal Energy Storage Applications , 2020, Accounts of chemical research.

[11]  H. Wegner,et al.  Rational Design of Azothiophenes—Substitution Effects on the Switching Properties , 2020, Chemistry.

[12]  C. Slavov,et al.  Thiophenylazobenzene: An Alternative Photoisomerization Controlled by Lone‐Pair⋅⋅⋅π Interaction , 2019, Angewandte Chemie.

[13]  A. Görling,et al.  Electrochemically controlled energy storage in a norbornadiene-based solar fuel with 99% reversibility , 2019, Nano Energy.

[14]  F. Boi,et al.  Anomalous c-axis shifts and symmetry enhancement in highly oriented pyrolytic graphite at the magic angle , 2019, Carbon.

[15]  U. Manthe,et al.  Long-Distance Rate Acceleration by Bulk Gold. , 2019, Angewandte Chemie.

[16]  K. Mikkelsen,et al.  Molecular Solar Thermal Energy Storage Systems with Long Discharge Times Based on the Dihydroazulene/Vinylheptafulvene Couple , 2019, European Journal of Organic Chemistry.

[17]  B. König,et al.  Heteroaryl azo dyes as molecular photoswitches , 2019, Nature Reviews Chemistry.

[18]  C. Bannwarth,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of chemical theory and computation.

[19]  P. Erhart,et al.  Norbornadiene-Based Photoswitches with Exceptional Combination of Solar Spectrum Match and Long-Term Energy Storage. , 2018, Chemistry.

[20]  W. Hieringer,et al.  Controlled Catalytic Energy Release of the Norbornadiene/Quadricyclane Molecular Solar Thermal Energy Storage System on Ni(111) , 2018, The Journal of Physical Chemistry C.

[21]  Shih‐Yuan Liu,et al.  The Dewar Isomer of 1,2-Dihydro-1,2-azaborinines: Isolation, Fragmentation, and Energy Storage. , 2018, Angewandte Chemie.

[22]  M. Fagnoni,et al.  Tuning the Thermal Isomerization of Phenylazoindole Photoswitches from Days to Nanoseconds. , 2018, Journal of the American Chemical Society.

[23]  C. Papp,et al.  Photochemical Energy Storage and Electrochemically Triggered Energy Release in the Norbornadiene-Quadricyclane System: UV Photochemistry and IR Spectroelectrochemistry in a Combined Experiment. , 2017, The journal of physical chemistry letters.

[24]  C. Papp,et al.  Catalytically Triggered Energy Release from Strained Organic Molecules: The Surface Chemistry of Quadricyclane and Norbornadiene on Pt(111). , 2017, Chemistry.

[25]  H. Rzepa,et al.  Tuning Azoheteroarene Photoswitch Performance through Heteroaryl Design. , 2017, Journal of the American Chemical Society.

[26]  Alexis Goulet-Hanssens,et al.  Electrocatalytic Z → E Isomerization of Azobenzenes. , 2017, Journal of the American Chemical Society.

[27]  P. Erhart,et al.  Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage , 2016, Chemistry.

[28]  C. Papp,et al.  Energy Storage in Strained Organic Molecules: (Spectro)Electrochemical Characterization of Norbornadiene and Quadricyclane. , 2016, ChemSusChem.

[29]  J. Grossman,et al.  Templated assembly of photoswitches significantly increases the energy-storage capacity of solar thermal fuels. , 2014, Nature chemistry.

[30]  Natalia L. Pacioni,et al.  Gold nanoparticle catalysis of the cis-trans isomerization of azobenzene. , 2013, Chemical communications.

[31]  O. Magnussen,et al.  Photoswitching of Azobenzene-Functionalized Molecular Platforms on Au Surfaces , 2012 .

[32]  A. Majumdar,et al.  Molecular solar thermal (MOST) energy storage and release system , 2012 .

[33]  R. Boulatov,et al.  Chemical solutions for the closed-cycle storage of solar energy , 2011 .

[34]  Sangwoon Yoon,et al.  Photoisomerization of azobenzene derivatives confined in gold nanoparticle aggregates. , 2011, Physical chemistry chemical physics : PCCP.

[35]  J. Grossman,et al.  Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels. , 2011, Nano letters.

[36]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[37]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[38]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[39]  A. Fujishima,et al.  Photoelectrochemical information storage using an azobenzene derivative , 1990, Nature.

[40]  K. Morse,et al.  Thermal isomerization of quadricyclane to norbornadiene catalyzed by copper(II) and tin(II) salts , 1983 .

[41]  C. Kutal,et al.  CATALYTIC ROLE OF COPPER(I) IN THE PHOTOASSISTED VALENCE ISOMERIZATION OF NORBORNADIENE , 1977 .

[42]  S. J. Cristol,et al.  Bridged Polycyclic Compounds. VI. The Photoisomerization of Bicyclo [2,2,1]hepta-2,5-diene-2,3-dicarboxylic Acid to Quadricyclo [2,2,1,02,6,03,5]heptane-2,3-dicarboxylic Acid1,2 , 1958 .