Well balanced finite volume methods for nearly hydrostatic flows
暂无分享,去创建一个
Rupert Klein | N. Botta | R. Klein | N. Botta | S. Lützenkirchen | S. Langenberg | S. Lützenkirchen | S. Langenberg | Nicola Botta | Susanne Langenberg | Susanne Lützenkirchen | F.-W Gerstengarbe | U. Werner
[1] A. Majda,et al. Compressible and incompressible fluids , 1982 .
[2] Kazuo Saito,et al. 3-D Mountain Waves by the Lokal-Modell of DWD and the MRI Mesoscale Nonhydrostatic Model. , 1998 .
[3] D. Durran. Numerical methods for wave equations in geophysical fluid dynamics , 1999 .
[4] B. V. Leer,et al. Towards the Ultimate Conservative Difference Scheme , 1997 .
[5] P. Cargo,et al. Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité , 1994 .
[6] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[7] D. Givoli. Non-reflecting boundary conditions , 1991 .
[8] H. Kapitza,et al. The non-hydrostatic mesoscale model GESIMA. I : Dynamical equations and tests , 1992 .
[9] Richard C. J. Somerville,et al. Numerical solution of the navier-stokes equations with topography , 1975 .
[10] R. Klein. Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .
[11] Oliver Fuhrer,et al. Numerical consistency of metric terms in terrain-following coordinates , 2003 .
[12] John K. Hunter,et al. Weakly nonlinear high frequency waves , 1983 .
[13] J. Dudhia. A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .
[14] M. Desgagné,et al. The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation , 1997 .
[15] P. A. Sheppard. Airflow over mountains , 1956 .
[16] A. E. Gill. Atmosphere-Ocean Dynamics , 1982 .
[17] Rupert Klein,et al. Asymptotic Analyses for Atmospheric Flows and the Construction of Asymptotically Adaptive Numerical Methods , 2000 .
[18] Luca Bonaventura,et al. A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .
[19] Slobodan Nickovic,et al. An Alternative Approach to Nonhydrostatic Modeling , 2001 .
[20] A. Simmons,et al. An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .
[21] Ronald B. Smith. Linear theory of stratified hydrostatic flow past an isolated mountain , 1980 .
[22] K. W. Morton,et al. Spurious entropy generation as a mesh quality indicator , 1995 .
[23] B. V. Leer,et al. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .
[24] Z. Janjic. A nonhydrostatic model based on a new approach , 2002 .
[25] C. Schulz-Rinne,et al. The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .
[26] Andrew J. Majda,et al. Systematic Multiscale Models for the Tropics , 2003 .
[27] Daniel Hempel. Rekonstruktionsverfahren auf unstrukturierten Gittern zur numerischen Simulation von Erhaltungsprinzipien , 2004 .
[28] R. LeVeque. Numerical methods for conservation laws , 1990 .
[29] B. V. Leer,et al. Towards the ultimate conservative difference scheme I. The quest of monotonicity , 1973 .
[30] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[31] P. Sweby. High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .
[32] A. Gilchrist,et al. A general circulation model of the atmosphere suitable for long period integrations , 1972 .
[33] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[34] G. Doms,et al. The Nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD: Part I: Scientific Documentation (Ve , 1999 .
[35] Patrick Jenny,et al. Rankine-Hugoniot-Riemann Solver Considering Source Terms and Multidimensional Effects , 1998 .
[36] B. V. Leer,et al. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .
[37] Evelyne Richard,et al. Simple Tests of a Semi-Implicit Semi-Lagrangian Model on 2D Mountain Wave Problems , 1995 .
[38] J. Greenberg,et al. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .
[39] D. Lüthi,et al. A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .
[40] Randall J. LeVeque,et al. Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .
[41] Jan S. Hesthaven,et al. Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .
[42] Paul Queney,et al. The Problem of Air Flow Over Mountains: A Summary of Theoretical Studies , 1948 .
[43] Hajime Nakamura. Dynamical Effects of Mountains on the General Circulation of the Atmosphere: I. Development of Finite-Difference Schemes Suitable for Incorporating Mountains , 1978 .
[44] Joseph B. Klemp,et al. Behavior of flow over step orography , 2000 .
[45] G. A. Corby. Airflow Over Mountains , 1955, Nature.
[46] A. Almgren,et al. Asymptotic Analysis of a Dry Atmosphere , 2000 .
[47] B. V. Leer,et al. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .