Well balanced finite volume methods for nearly hydrostatic flows

In numerical approximations of nearly hydrostatic flows, a proper representation of the dominant hydrostatic balance is of crucial importance: unbalanced truncation errors can induce unacceptable spurious motions, e.g., in dynamical cores of models for numerical weather prediction (NWP) in particular near steep topography. In this paper we develop a new strategy for the construction of discretizations that are "well-balanced" with respect to dominant hydrostatics. The classical idea of formulating the momentum balance in terms of deviations of pressure from a balanced background distribution is realized here through local, time dependent hydrostatic reconstructions. Balanced discretizations of the pressure gradient and of the gravitation source term are achieved through a "discrete Archimedes' buoyancy principle". This strategy is applied to extend an explicit standard finite volume Godunov-type scheme for compressible flows with minimal modifications. The resulting method has the following features: (i) It inherits its conservation properties from the underlying base scheme. (ii) It is exactly balanced, even on curvilinear grids, for a large class of near-hydrostatic flows. (iii) It solves the full compressible flow equations without reference to a background state that is defined for an entire vertical column of air. (iv) It is robust with respect to details of the implementation. such as the choice of slope limiting functions, or the particularities of boundary condition discretizations.

[1]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[2]  Kazuo Saito,et al.  3-D Mountain Waves by the Lokal-Modell of DWD and the MRI Mesoscale Nonhydrostatic Model. , 1998 .

[3]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[4]  B. V. Leer,et al.  Towards the Ultimate Conservative Difference Scheme , 1997 .

[5]  P. Cargo,et al.  Un schéma équilibre adapté au modèle d'atmosphère avec termes de gravité , 1994 .

[6]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[7]  D. Givoli Non-reflecting boundary conditions , 1991 .

[8]  H. Kapitza,et al.  The non-hydrostatic mesoscale model GESIMA. I : Dynamical equations and tests , 1992 .

[9]  Richard C. J. Somerville,et al.  Numerical solution of the navier-stokes equations with topography , 1975 .

[10]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[11]  Oliver Fuhrer,et al.  Numerical consistency of metric terms in terrain-following coordinates , 2003 .

[12]  John K. Hunter,et al.  Weakly nonlinear high frequency waves , 1983 .

[13]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[14]  M. Desgagné,et al.  The Canadian MC2: A Semi-Lagrangian, Semi-Implicit Wideband Atmospheric Model Suited for Finescale Process Studies and Simulation , 1997 .

[15]  P. A. Sheppard Airflow over mountains , 1956 .

[16]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[17]  Rupert Klein,et al.  Asymptotic Analyses for Atmospheric Flows and the Construction of Asymptotically Adaptive Numerical Methods , 2000 .

[18]  Luca Bonaventura,et al.  A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .

[19]  Slobodan Nickovic,et al.  An Alternative Approach to Nonhydrostatic Modeling , 2001 .

[20]  A. Simmons,et al.  An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates , 1981 .

[21]  Ronald B. Smith Linear theory of stratified hydrostatic flow past an isolated mountain , 1980 .

[22]  K. W. Morton,et al.  Spurious entropy generation as a mesh quality indicator , 1995 .

[23]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[24]  Z. Janjic A nonhydrostatic model based on a new approach , 2002 .

[25]  C. Schulz-Rinne,et al.  The Riemann problem for two-dimensional gas dynamics and new limiters for high-order schemes , 1993 .

[26]  Andrew J. Majda,et al.  Systematic Multiscale Models for the Tropics , 2003 .

[27]  Daniel Hempel Rekonstruktionsverfahren auf unstrukturierten Gittern zur numerischen Simulation von Erhaltungsprinzipien , 2004 .

[28]  R. LeVeque Numerical methods for conservation laws , 1990 .

[29]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme I. The quest of monotonicity , 1973 .

[30]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[31]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[32]  A. Gilchrist,et al.  A general circulation model of the atmosphere suitable for long period integrations , 1972 .

[33]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[34]  G. Doms,et al.  The Nonhydrostatic Limited-Area Model LM (Lokal-Modell) of DWD: Part I: Scientific Documentation (Ve , 1999 .

[35]  Patrick Jenny,et al.  Rankine-Hugoniot-Riemann Solver Considering Source Terms and Multidimensional Effects , 1998 .

[36]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow , 1977 .

[37]  Evelyne Richard,et al.  Simple Tests of a Semi-Implicit Semi-Lagrangian Model on 2D Mountain Wave Problems , 1995 .

[38]  J. Greenberg,et al.  A well-balanced scheme for the numerical processing of source terms in hyperbolic equations , 1996 .

[39]  D. Lüthi,et al.  A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .

[40]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[41]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[42]  Paul Queney,et al.  The Problem of Air Flow Over Mountains: A Summary of Theoretical Studies , 1948 .

[43]  Hajime Nakamura Dynamical Effects of Mountains on the General Circulation of the Atmosphere: I. Development of Finite-Difference Schemes Suitable for Incorporating Mountains , 1978 .

[44]  Joseph B. Klemp,et al.  Behavior of flow over step orography , 2000 .

[45]  G. A. Corby Airflow Over Mountains , 1955, Nature.

[46]  A. Almgren,et al.  Asymptotic Analysis of a Dry Atmosphere , 2000 .

[47]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .