Nature-Inspired Design Techniques for Ultra-Wideband Aperiodic Antenna Arrays

Over the past few decades, much research has been invested in the exploration of wideband and ultra-wideband (UWB) antenna arrays. The goals of such array designs are to determine the best element arrangements, which yield radiation patterns possessing the highest degrees of side lobe suppression, and no grating lobes over the largest possible operating bandwidths. It has been recently shown that nature-inspired array-design methodologies can provide solutions that exhibit these ultra-wideband characteristics. This article provides an overview of two such designs: linear polyfractal arrays, and planar arrays of aperiodic tilings. Robust nature-inspired genetic-algorithm optimization techniques were utilized in the design of both types of arrays in order to obtain the best-possible UWB performance. This article also discusses the fabrication and experimental validation of two 32-element linear polyfractal array-design prototypes, which exhibited close agreement to the radiation performance predicted by simulation. These experimentally validated arrays possessed wide bandwidths with suppressed grating lobes and relatively low sidelobes for their size (-16.3 dB at f0 and -5.39 dB at f0)Additional simulations discussed in this paper showed that the benefits of these methodologies are amplified when applied to larger sized array designs (Le., arrays with larger element counts). One example exhibited a peak sidelobe level less than -19.34 dB over a 40:1 bandwidth.

[1]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[2]  D.H. Werner,et al.  The Pareto Optimization of Ultrawideband Polyfractal Arrays , 2008, IEEE Transactions on Antennas and Propagation.

[3]  K.-P Nischke,et al.  A construction of inflation rules based onn-fold symmetry , 1996, Discret. Comput. Geom..

[4]  J.N. Bogard,et al.  Optimization of Peano-Gosper fractile arrays using genetic algorithms to reduce grating lobes during scanning , 2005, IEEE International Radar Conference, 2005..

[5]  C. Goodman-Strauss MATCHING RULES AND SUBSTITUTION TILINGS , 1998 .

[6]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[7]  Y. Kim,et al.  The fractal random array , 1986, Proceedings of the IEEE.

[8]  Douglas H. Werner,et al.  Genetic Algorithms in Electromagnetics , 2007 .

[9]  D. Werner,et al.  Design of Broadband Planar Arrays Based on the Optimization of Aperiodic Tilings , 2008, IEEE Transactions on Antennas and Propagation.

[10]  V. Galdi,et al.  Radiation properties of planar antenna arrays based on certain categories of aperiodic tilings , 2005, IEEE Transactions on Antennas and Propagation.

[11]  D. King,et al.  Unequally-spaced, broad-band antenna arrays , 1960 .

[12]  W. J. Hendricks The totally random versus the bin approach for random arrays , 1991 .

[13]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[14]  D.H. Werner,et al.  Particle swarm optimization versus genetic algorithms for phased array synthesis , 2004, IEEE Transactions on Antennas and Propagation.

[15]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[16]  A. Massa,et al.  Peak sidelobe level reduction with a hybrid approach based on GAs and difference sets , 2004, IEEE Transactions on Antennas and Propagation.

[17]  A. Ishimaru,et al.  Thinning and broadbanding antenna arrays by unequal spacings , 1965 .

[18]  Dwight L. Jaggard,et al.  Cantor ring arrays , 1998 .

[19]  de Ng Dick Bruijn Updown generation of Penrose patterns , 1990 .

[20]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[21]  J. Doles,et al.  Broad-band array design using the asymptotic theory of unequally spaced arrays , 1988 .

[22]  D.W. Boeringer,et al.  Efficiency-constrained particle swarm optimization of a modified bernstein polynomial for conformal array excitation amplitude synthesis , 2005, IEEE Transactions on Antennas and Propagation.

[23]  Douglas H. Werner,et al.  Optimization of thinned aperiodic linear phased arrays using genetic algorithms to reduce grating lobes during scanning , 2002 .

[24]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[25]  Jonathan D. Ballou,et al.  Introduction to Conservation Genetics: Frontmatter , 2010 .

[26]  M. Andreasen,et al.  Linear arrays with variable interelement spacings , 1962 .

[27]  Randy L. Haupt Thinned arrays using genetic algorithms , 1994 .

[28]  J.S. Petko,et al.  An Autopolyploidy-Based Genetic Algorithm for Enhanced Evolution of Linear Polyfractal Arrays , 2007, IEEE Transactions on Antennas and Propagation.

[29]  D.H. Werner,et al.  Design validation of prototype ultra-wideband linear polyfractal antenna arrays , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[30]  David Corne,et al.  The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[31]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[32]  J.S. Petko,et al.  The evolution of optimal linear polyfractal arrays using genetic algorithms , 2005, IEEE Transactions on Antennas and Propagation.