Peptide linkers for the immobilization of bioactive molecules on biphasic calcium phosphate via a modular immobilization system.

[1]  Christian Bergmann,et al.  Synthesis of novel tricalcium phosphate-bioactive glass composite and functionalization with rhBMP-2 , 2011, Journal of materials science. Materials in medicine.

[2]  C. Ferreira,et al.  Hydroxyapatite surface solubility and effect on cell adhesion. , 2010, Colloids and surfaces. B, Biointerfaces.

[3]  D. Scharnweber,et al.  Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox , 2010, Journal of The Royal Society Interface.

[4]  D. Scharnweber,et al.  Immobilization of oligonucleotides on titanium based materials by partial incorporation in anodic oxide layers. , 2009, Biomaterials.

[5]  D. Scharnweber,et al.  Oligonucleotide-RGD peptide conjugates for surface modification of titanium implants and improvement of osteoblast adhesion. , 2009, Bioconjugate chemistry.

[6]  D. Kohn,et al.  The adsorption of preferential binding peptides to apatite-based materials. , 2009, Biomaterials.

[7]  A. Lode,et al.  Heparin modification of calcium phosphate bone cements for VEGF functionalization. , 2008, Journal of biomedical materials research. Part A.

[8]  S. K. Stanley,et al.  Identification of a Highly Specific Hydroxyapatite‐binding Peptide using Phage Display , 2008 .

[9]  J. Rossant,et al.  Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis , 2008, The Journal of experimental medicine.

[10]  T. Arnett Extracellular pH regulates bone cell function. , 2008, The Journal of nutrition.

[11]  K. Kandori,et al.  Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids. , 2007, Colloids and surfaces. B, Biointerfaces.

[12]  A Lode,et al.  Calcium phosphate bone cements, functionalized with VEGF: release kinetics and biological activity. , 2007, Journal of biomedical materials research. Part A.

[13]  G. Drobny,et al.  Thermodynamic roles of basic amino acids in statherin recognition of hydroxyapatite. , 2007, Biochemistry.

[14]  Yung Chang,et al.  Studies of the interaction mechanism between single strand and double-strand DNA with hydroxyapatite by microcalorimetry and isotherm measurements , 2007 .

[15]  T. Webster,et al.  Increased osteoblast adhesion on nanoparticulate crystalline hydroxyapatite functionalized with KRSR , 2006, International journal of nanomedicine.

[16]  B. Ratner,et al.  Enhancing the biological activity of immobilized osteopontin using a type-1 collagen affinity coating. , 2004, Journal of biomedical materials research. Part A.

[17]  M. Quirynen,et al.  Impact of systemic diseases and medication on osseointegration. , 2003, Periodontology 2000.

[18]  D. Murray,et al.  A correlative study of clinical and histological findings of revision hip arthroplasty for rheumatoid arthritis and inflammatory joint disease , 2003, Scandinavian journal of rheumatology.

[19]  D. Becker,et al.  Transforming growth factor β1 immobilized adsorptively on Ti6Al4V and collagen type I coated Ti6Al4V maintains its biological activity , 2003 .

[20]  Jui-Sheng Sun,et al.  Immobilization of Chinese herbal medicine onto the surface-modified calcium hydrogenphosphate. , 2003, Biomaterials.

[21]  Bruce P. Lee,et al.  Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. , 2003, Journal of the American Chemical Society.

[22]  K. Ohya,et al.  Enhancement of osteogenesis on hydroxyapatite surface coated with synthetic peptide (EEEEEEEPRGDT) in vitro. , 2002, Journal of biomedical materials research.

[23]  A. Piancastelli,et al.  Plasma protein adsorption pattern on characterized ceramic biomaterials. , 2002, Biomaterials.

[24]  S. Bellis,et al.  Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel. , 2001, Journal of biomedical materials research.

[25]  J. Waite,et al.  Polyphosphoprotein from the adhesive pads of Mytilus edulis. , 2001, Biochemistry.

[26]  J. R. Long,et al.  Chimeric Peptides of Statherin and Osteopontin That Bind Hydroxyapatite and Mediate Cell Adhesion* , 2000, The Journal of Biological Chemistry.

[27]  J. R. Long,et al.  Determination of statherin N-terminal peptide conformation on hydroxyapatite crystals , 2000 .

[28]  C. Schwartz,et al.  Biphasic synthetic bone substitute use in orthopaedic and trauma surgery: clinical, radiological and histological results , 1999, Journal of materials science. Materials in medicine.

[29]  M. Baslé,et al.  Cellular response to calcium phosphate ceramics implanted in rabbit bone , 1993 .

[30]  G. H. Nancollas,et al.  Salivary statherin. Dependence on sequence, charge, hydrogen bonding potency, and helical conformation for adsorption to hydroxyapatite and inhibition of mineralization. , 1992, The Journal of biological chemistry.

[31]  T. Kawasaki Hydroxyapatite as a liquid chromatographic packing , 1991 .

[32]  P. Orsulak,et al.  Colorimetric assay for monoamine oxidase in tissues using peroxidase and 2,2'-azinodi(3-ethylbenzthiazoline-6-sulfonic acid) as chromogen. , 1984, Analytical biochemistry.

[33]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[34]  M. Grinstaff,et al.  The Development of Peptide-based Interfacial Biomaterials for Generating Biological Functionality on the Surface of Bioinert Materials , 2022 .

[35]  D. Scharnweber,et al.  Surface modification of titanium-based alloys with bioactive molecules using electrochemically fixed nucleic acids. , 2007, Journal of biomedical materials research. Part B, Applied biomaterials.

[36]  Gerhard Ziemer,et al.  The effect of electrochemical functionalization of Ti-alloy surfaces by aptamer-based capture molecules on cell adhesion. , 2007, Biomaterials.

[37]  C. R. Howlett,et al.  Differentiation of human bone-derived cells grown on GRGDSP-peptide bound titanium surfaces. , 2003, Journal of biomedical materials research. Part A.

[38]  G. Embery,et al.  Adsorption of bovine serum albumin onto hydroxyapatite. , 1995, Biomaterials.

[39]  M. Chapman,et al.  The evaluation of a biphasic calcium phosphate ceramic for use in grafting long‐bone diaphyseal defects , 1987, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.