Measuring the Efficiency of the Intraday Forex Market with a Universal Data Compression Algorithm

Universal compression algorithms can detect recurring patterns in any type of temporal data—including financial data—for the purpose of compression. The universal algorithms actually find a model of the data that can be used for either compression or prediction. We present a universal Variable Order Markov (VOM) model and use it to test the weak form of the Efficient Market Hypothesis (EMH). The EMH is tested for 12 pairs of international intra-day currency exchange rates for one year series of 1, 5, 10, 15, 20, 25 and 30 min. Statistically significant compression is detected in all the time-series and the high frequency series are also predictable above random. However, the predictability of the model is not sufficient to generate a profitable trading strategy, thus, Forex market turns out to be efficient, at least most of the time.

[1]  W. Poon,et al.  The Validity of PPP Theory in ASEAN-Five: Another Look on Cointegration and Panel Data Analysis , 2003 .

[2]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[3]  Emanuela Marrocu,et al.  The performance of non‐linear exchange rate models: a forecasting comparison , 2002 .

[4]  Kin Keung Lai,et al.  Adaptive Smoothing Neural Networks in Foreign Exchange Rate Forecasting , 2005, International Conference on Computational Science.

[5]  Georg Dorffner,et al.  A symbolic dynamics approach to volatility prediction , 1998 .

[6]  T. Hellström,et al.  Predicting the Stock Market , 1998 .

[7]  Yongmiao Hong,et al.  Model-Free Evaluation of Directional Predictability in Foreign Exchange Markets , 2007 .

[8]  F. Eugene FAMA, . Market efficiency, long-term returns, and behavioral finance, Journal of Financial Economics . , 1998 .

[9]  C. Granger,et al.  Efficient Market Hypothesis and Forecasting , 2002 .

[10]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[11]  Armin Shmilovici,et al.  Context-Based Statistical Process Control , 2003, Technometrics.

[12]  Martin J. Pring,et al.  Technical Analysis Explained: The Successful Investor's Guide to Spotting Investment Trends and Turning Points , 1980 .

[13]  Terence C. Mills,et al.  Forecasting financial markets , 2002 .

[14]  Nigar Hashimzade,et al.  A dictionary of economics , 1997 .

[15]  Xiru Zhang Non-Linear Predictive Models for Intra-Day Foreign Exchange Trading , 1994 .

[16]  Jacob Ziv,et al.  An efficient universal prediction algorithm for unknown sources with limited training data , 2002, IEEE Trans. Inf. Theory.

[17]  Ran El-Yaniv,et al.  On Prediction Using Variable Order Markov Models , 2004, J. Artif. Intell. Res..

[18]  G. William Schwert,et al.  Chapter 15 Anomalies and market efficiency , 2003 .

[19]  JORMA RISSANEN,et al.  A universal data compression system , 1983, IEEE Trans. Inf. Theory.

[20]  Jorma Rissanen,et al.  Universal coding, information, prediction, and estimation , 1984, IEEE Trans. Inf. Theory.

[21]  Michael A. H. Dempster,et al.  Computational learning techniques for intraday FX trading using popular technical indicators , 2001, IEEE Trans. Neural Networks.

[22]  Marcus Hutter Convergence and Error Bounds for Universal Prediction of Nonbinary Sequences , 2001, ECML.

[23]  B. Malkiel The Ef cient Market Hypothesis and Its Critics , 2003 .

[24]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[25]  Annette M. Green,et al.  Kappa Statistics for Multiple Raters Using Categorical Classifications , 1997 .

[26]  Joel G. Siegel,et al.  Dictionary of Economics , 1995 .

[27]  Guido Deboeck,et al.  Trading on the Edge: Neural, Genetic, and Fuzzy Systems for Chaotic Financial Markets , 1994 .

[28]  Paul M. B. Vitányi,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1993, Graduate Texts in Computer Science.

[29]  Ching-Wei Tan Estimating the Complexity Function of Financial Time series: An Estimation Based on Predictive Stochastic Complexity , 1999 .

[30]  Blake LeBaron,et al.  Technical Trading Rule Profitability and Foreign Exchange Intervention , 1996 .

[31]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[32]  Neil D. Pearson,et al.  Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case , 1991 .

[33]  Jean-Philippe Vert,et al.  Adaptive context trees and text clustering , 2001, IEEE Trans. Inf. Theory.

[34]  C. Bellgard,et al.  Forecasting foreign exchange rates: Random Walk Hypothesis, linearity and data frequency , 1999 .

[35]  Meir Feder,et al.  Branch prediction based on universal data compression algorithms , 1998, ISCA.

[36]  A. Lo,et al.  Efficient Markets Hypothesis , 2007 .

[37]  Yuriy L. Orlov,et al.  Construction of stochastic context trees for genetical texts , 2002, Silico Biol..

[38]  Aaron D. Wyner,et al.  Prediction and Entropy of Printed English , 1993 .

[39]  Neri Merhav,et al.  Universal prediction of individual sequences , 1992, IEEE Trans. Inf. Theory.

[40]  J. Sim,et al.  The kappa statistic in reliability studies: use, interpretation, and sample size requirements. , 2005, Physical therapy.

[41]  Neri Merhav,et al.  Relations between entropy and error probability , 1994, IEEE Trans. Inf. Theory.

[42]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[43]  Armin Shmilovici,et al.  Gene-finding with the VOM model , 2007, J. Comput. Methods Sci. Eng..

[44]  Armin Shmilovici,et al.  Identification of transcription factor binding sites with variable-order Bayesian networks , 2005, Bioinform..

[45]  Neri Merhav,et al.  Universal schemes for sequential decision from individual data sequences , 1993, IEEE Trans. Inf. Theory.

[46]  William I. Gasarch,et al.  Book Review: An introduction to Kolmogorov Complexity and its Applications Second Edition, 1997 by Ming Li and Paul Vitanyi (Springer (Graduate Text Series)) , 1997, SIGACT News.

[47]  Christopher J. Neely Technical analysis in the foreign exchange market: a layman's guide , 1997 .

[48]  Jacob Ziv A universal prediction lemma and applications to universal data compression and prediction , 2001, IEEE Trans. Inf. Theory.

[49]  Golan Yona,et al.  Variations on probabilistic suffix trees: statistical modeling and prediction of protein families , 2001, Bioinform..

[50]  H. V. Dijk,et al.  Neural network pruning applied to real exchange rate analysis , 2002 .

[51]  E. Fama Market Efficiency, Long-Term Returns, and Behavioral Finance , 1997 .

[52]  Glenn Shafer,et al.  Testing Lead-Lag Effects under Game-Theoretic Efficient Market Hypotheses , 2010 .

[53]  Joarder Kamruzzaman,et al.  ANN-Based Forecasting of Foreign Currency Exchange Rates , 2004 .

[54]  H. White,et al.  Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap , 1999 .

[55]  Claude E. Shannon,et al.  Prediction and Entropy of Printed English , 1951 .

[56]  Armin Shmilovici,et al.  CSPC: A Monitoring Procedure for State Dependent Processes , 2003 .

[57]  M. C. Jensen Some Anomalous Evidence Regarding Market Efficiency , 1978 .

[58]  B. LeBaron Technical Trading Rule Profitability and Foreign Exchange Intervention , 1996 .

[59]  P. Bühlmann,et al.  Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .

[60]  Guo Lin-jun Efficient Markets Hypothesis and Fractals Markets Hypothesis , 2002 .

[61]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[62]  Mark P. Taylor,et al.  The use of technical analysis in the foreign exchange market , 1992 .

[63]  Armin Shmilovici,et al.  Using a VOM model for reconstructing potential coding regions in EST sequences , 2007, Comput. Stat..

[64]  Constantine Papageorgiou,et al.  High frequency time series analysis and prediction using Markov models , 1997, Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr).

[65]  T. Cover Universal Portfolios , 1996 .

[66]  Armin Shmilovici,et al.  Using a Stochastic Complexity Measure to Check the Efficient Market Hypothesis , 2003 .

[67]  Neri Merhav,et al.  Universal Prediction , 1998, IEEE Trans. Inf. Theory.