Equality and extensionality in automated higher order theorem proving

This thesis focuses on equality and extensionality in automated higher-order theorem proving based on Church's simply typed lambda - calculus (classical type theory). First, a landscape of various semantical notions is preented that is motivated by the different roles equality adopts in them. Each of the semantical notions in this landscape - including Henkin semantics - is then linked with an abstract consistency principle that can be employed for analysing the connection between syntax and semantics of higer-order calculi. Apart from this proof theoretic tools, the main contributions of this are the three new calculi ER (extensional higher-order resolution), EP (extensoinal higher-order paramodulation) and ERUE (extensonal higher-order RUE-resolution) which improve the mechanisation of defined and primitvie equality in classical type theory. In contrast to the refutation approaches for classical type theory developed so far, these calculi reach Henkin completeness without requiring additional extensionality axioms. The key idea is to allow for recursive calls from higer-order unification to the overall refutation search. Calculus ER, which in contrast to EP and ERUE, considers equality only as a defined notion, has been implemented in the theorem prover LEO and the suitability of this approach for proving simple theorems about sets has been demonstrated in a case study. Diese Arbeit untersucht Gleichheit und Extensionalitaet im automatischen Beweisen in Logik hoeherer Stufe. Die betrachtete Sprache ist die klassische Typtheorie, d.h. eine Logik hoeherer Stufe basierend auf Churchs einfach getypten Lambda-Kalkul. Zunachst werden unterschiedlich starke Semantikbegriffe fur die klassische Typtheorie erarbeitet, die durch die jeweils unterschiedlichen Rollen, die die Gleichheit in ihnen einnimmt, motiviert sind. Jedem der eingefuhrten Semantikbegriffe wird dann eine Menge abstrakter Konsistenzeigenschaften zugeordnet mit dem Ziel, die Analyse der Verbindung zwischen Syntax und Semantik von Beweiskalkulen fur die klassische Typtheorie zu erleichtern.

[1]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[2]  I. V. Ramakrishnan,et al.  Term Indexing , 1995, Lecture Notes in Computer Science.

[3]  Dieter Hutter,et al.  System Description: inka 5.0 - A Logic Voyager , 1999, CADE.

[4]  Claire Gardent,et al.  Higher-Order Coloured Unification and Natural Language Semantics , 1996, ACL.

[5]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[6]  Wayne Snyder,et al.  Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..

[7]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[8]  William McCune,et al.  OTTER 3.0 Reference Manual and Guide , 1994 .

[9]  Gérard P. Huet,et al.  A Mechanization of Type Theory , 1973, IJCAI.

[10]  Alan Bundy,et al.  The Use of Explicit Plans to Guide Inductive Proofs , 1988, CADE.

[11]  Daniel J. Dougherty,et al.  A Combinatory Logic Approach to Higher-Order E-Unification , 1995, Theor. Comput. Sci..

[12]  J. Roger Hindley,et al.  Introduction to Combinators and Lambda-Calculus , 1986 .

[13]  Zhenyu Qian,et al.  Modular Higher-Order Equational Preunification , 1996, J. Symb. Comput..

[14]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[15]  Wayne Snyder Higher Order E-Unification , 1990, CADE.

[16]  Martin Hofmann,et al.  Extensional Constructs in Intensional Type Theory , 1997, CPHC/BCS Distinguished Dissertations.

[17]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[18]  Roberto Di Cosmo,et al.  Combining Algebraic Rewriting, Extensional Lambda Calculi, and Fixpoints , 1996, Theor. Comput. Sci..

[19]  Tomasz Pietrzykowski A Complete Mechanization of Second-Order Type Theory , 1973, JACM.

[20]  Tobias Nipkow,et al.  Higher-Order Rewrite Systems and Their Confluence , 1998, Theor. Comput. Sci..

[21]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[22]  Dana S. Scott,et al.  Existence and Description in Formal Logic , 1973 .

[23]  Michael Kohlhase,et al.  Higher-Order Order-Sorted Resolution , 1999 .

[24]  H. Mantel,et al.  Simultaneous Quantiier Elimination , 1998 .

[25]  Karsten Konrad,et al.  Higher-Order Automated Theorem Proving for Natural Language Semantics , 1998 .

[26]  Zhenyu Qian,et al.  Linear Unification of Higher-Order Patterns , 1993, TAPSOFT.

[27]  Peter B. Andrews General models and extensionality , 1972, Journal of Symbolic Logic.

[28]  Christoph Benzmüller,et al.  A calculus and a system architecture for extensional higher-order resolution , 1997 .

[29]  Jorg P. Muller,et al.  The Design of Intelligent Agents: A Layered Approach , 1996 .

[30]  Albert Rubio,et al.  The higher-order recursive path ordering , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[31]  Leon Henkin,et al.  The Discovery of My Completeness Proofs , 1996, Bulletin of Symbolic Logic.

[32]  Peter B. Andrews An introduction to mathematical logic and type theory - to truth through proof , 1986, Computer science and applied mathematics.

[33]  Stuart M. Shieber,et al.  Ellipsis and higher-order unification , 1991 .

[34]  Dale Miller,et al.  A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..

[35]  R. Smullyan First-Order Logic , 1968 .

[36]  R. D. Cosmo,et al.  A confluent reduction for the extensional typed λ − calculus with pairs , sums , recursion and terminal object , 1993 .

[37]  David A. Wolfram,et al.  The Clausal Theory of Types , 1993 .

[38]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[39]  Thorsten Altenkirch Extensional equality in intensional type theory , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[40]  Volker Sorge,et al.  Critical Agents Supporting Interactive Theorem Proving , 1999, EPIA.

[41]  Leon Henkin,et al.  Completeness in the theory of types , 1950, Journal of Symbolic Logic.

[42]  B. Russell Mathematical Logic as Based on the Theory of Types , 1908 .

[43]  Christoph Benzmüller,et al.  Extensional Higher-Order Resolution , 1998, CADE.

[44]  Tobias Nipkow,et al.  Modular Higher-Order E-Unification , 1991, RTA.

[45]  G. Nadathur A higher-order logic as the basis for logic programming , 1987 .

[46]  Peter Baumgartner,et al.  PROTEIN: A PROver with a Theory Extension INterface , 1994, CADE.

[47]  Jörg H. Siekmann,et al.  KEIM: A Toolkit for Automated Deduction , 1994, CADE.

[48]  Claire Gardent,et al.  Focus and Higher-Order Unification , 1996, COLING.

[49]  Gaisi Takeuti,et al.  On a generalized logic calculus , 1953 .

[50]  Dieter Hutter,et al.  INKA: The Next Generation , 1996, CADE.

[51]  Gert Smolka,et al.  Encapsulated Search and Constraint Programming in Oz , 1994, PPCP.

[52]  Michael Kohlhase,et al.  Higher-Order Tableaux , 1995, TABLEAUX.

[53]  Erica Melis How Mathematicians Prove Theorems , 2019, Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society.

[54]  Erica Melis,et al.  A Model of Analogy-Driven Proof-Plan Construction , 1995, IJCAI.

[55]  Volker Sorge,et al.  Agent-Oriented Integration of Distributed Mathematical Services , 1999, J. Univers. Comput. Sci..

[56]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[57]  Peter B. Andrews Transforming Matings into Natural Deduction Proofs , 1980, CADE.

[58]  Martin Davis,et al.  The Prehistory and Early History of Automated Deduction , 1983 .

[59]  GERARD P. HUET,et al.  The Undecidability of Unification in Third Order Logic , 1973, Inf. Control..

[60]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Roberto Virga,et al.  Higher-Order Superposition for Dependent Types , 1996, RTA.

[62]  Frank Pfenning,et al.  Automated Theorem Proving in a Simple Meta-Logic for LF , 1998, CADE.

[63]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[64]  Piotr Rudnicki,et al.  An Overview of the MIZAR Project , 1992 .

[65]  Gérard Huet,et al.  Constrained resolution: a complete method for higher-order logic. , 1972 .

[66]  Vincent Padovani,et al.  On Equivalence Classes of Interpolation Equations , 1995, TLCA.

[67]  Christoph Benzmüller,et al.  Model Existence for Higher Order Logic , 1997 .

[68]  Gopalan Nadathur,et al.  Uniform Proofs as a Foundation for Logic Programming , 1991, Ann. Pure Appl. Log..

[69]  David Hilbert,et al.  Über die Grundlagen der Logik und der Arithmetik , 1905 .

[70]  Michael Kohlhase,et al.  A mechanization of sorted higher-order logic based on the resolution principle , 1994 .

[71]  Claire Gardent,et al.  Computing Parallelism in Discourse , 1997, IJCAI.

[72]  K. Schutte Review: Dag Prawitz, Hauptsatz for Higher Order Logic; Dag Prawitz, Completeness and Hauptsatz for Second Order Logic; Moto-o Takahashi, A Proof of Cut-Elimination in Simple Type-Theory , 1974 .

[73]  Peter B. Andrews General Models, Descriptions, and Choice in Type Theory , 1972, J. Symb. Log..

[74]  Christoph Benzmüller,et al.  System Description: LEO - A Higher-Order Theorem Prover , 1998, CADE.