Understanding the Plasticity of the α/β Hydrolase Fold: Lid Swapping on the Candida antarctica Lipase B Results in Chimeras with Interesting Biocatalytic Properties

The best of both worlds. Long molecular dynamics (MD) simulations of Candida antarctica lipase B (CALB) confirmed the function of helix α5 as a lid structure. Replacement of the helix with corresponding lid regions from CALB homologues from Neurospora crassa and Gibberella zeae resulted in new CALB chimeras with novel biocatalytic properties. The figure shows a snapshot from the MD simulation.

[1]  Zhen Qian,et al.  Investigating the Structural and Functional Consequences of Circular Permutation on Lipase B from Candida Antarctica , 2007, Chembiochem : a European journal of chemical biology.

[2]  A. Ghanem Trends in lipase-catalyzed asymmetric access to enantiomerically pure/enriched compounds , 2007 .

[3]  H. Gaub,et al.  Functional expression of Candida antarctica lipase B in Eschericha coli. , 2006, Journal of biotechnology.

[4]  S. Bhatia,et al.  Performance of free Candida antarctica lipase B in the enantioselective esterification of (R)-ketoprofen , 2006 .

[5]  V. Gotor‐Fernández,et al.  Lipases: Useful biocatalysts for the preparation of pharmaceuticals , 2006 .

[6]  S. Brocca,et al.  The lid is a structural and functional determinant of lipase activity and selectivity , 2006 .

[7]  E. Busto,et al.  Candida antarctica Lipase B: An Ideal Biocatalyst for the Preparation of Nitrogenated Organic Compounds , 2006 .

[8]  K. Hult,et al.  Fast carbon-carbon bond formation by a promiscuous lipase. , 2005, Journal of the American Chemical Society.

[9]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[10]  Pablo Domínguez de María,et al.  Biotechnological applications of Candida antarctica lipase A: State-of-the-art , 2005 .

[11]  Subhash Bhatia,et al.  Current technologies for the production of (S)-ketoprofen: Process perspective , 2005 .

[12]  Zhen Qian,et al.  Improving the catalytic activity of Candida antarctica lipase B by circular permutation. , 2005, Journal of the American Chemical Society.

[13]  T. Igarashi,et al.  Small amounts of achiral beta-amino alcohols reverse the enantioselectivity of chiral catalysts in cooperative asymmetric autocatalysis. , 2005, Journal of the American Chemical Society.

[14]  K. Hult,et al.  Creating Space for Large Secondary Alcohols by Rational Redesign of Candida antarctica Lipase B , 2005, Chembiochem : a European journal of chemical biology.

[15]  J. Masson,et al.  Rational Strategies for Directed Evolution of Biocatalysts –Application to Candida antarctica lipase B (CALB) , 2005 .

[16]  T. Brinck,et al.  Exploring the Active‐Site of a Rationally Redesigned Lipase for Catalysis of Michael‐Type Additions , 2005, Chembiochem : a European journal of chemical biology.

[17]  T. Brinck,et al.  Aldol additions with mutant lipase: analysis by experiments and theoretical calculations , 2004 .

[18]  S. Lutz Engineering lipase B from Candida antarctica , 2004 .

[19]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[20]  W. Suen,et al.  Improved activity and thermostability of Candida antarctica lipase B by DNA family shuffling. , 2004, Protein engineering, design & selection : PEDS.

[21]  W. Windsor,et al.  Improving tolerance of Candida antarctica lipase B towards irreversible thermal inactivation through directed evolution. , 2003, Protein engineering.

[22]  T. Brinck,et al.  Rational design of a lipase to accommodate catalysis of Baeyer–Villiger oxidation with hydrogen peroxide , 2003, Journal of molecular modeling.

[23]  Per Berglund,et al.  Carbon-carbon bonds by hydrolytic enzymes. , 2003, Journal of the American Chemical Society.

[24]  K. Hult,et al.  Improved Enantioselectivity of a Lipase by Rational Protein Engineering , 2001, Chembiochem : a European journal of chemical biology.

[25]  R. Gross,et al.  Polymer synthesis by in vitro enzyme catalysis. , 2001, Chemical reviews.

[26]  K. Hult,et al.  Creation of an enantioselective hydrolase by engineered substrate-assisted catalysis. , 2001, Journal of the American Chemical Society.

[27]  U. Bornscheuer,et al.  Lipase-Catalyzed Resolution of Ibuprofen , 2000 .

[28]  M. Nardini,et al.  α/β Hydrolase fold enzymes : the family keeps growing , 1999 .

[29]  A. Goldman,et al.  Of barn owls and bankers: a lush variety of α/β hydrolases , 1999 .

[30]  J. Vind,et al.  Effect of mutations in Candida antarctica B lipase. , 1998, Chemistry and physics of lipids.

[31]  K. Hult,et al.  Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. , 1998, Biophysical journal.

[32]  I. G. Clausen,et al.  Effect of mutation in non-consensus sequence Thr-X-Ser-X-Gly of Candida antarctica lipase B on lipase specificity, specific activity and thermostability , 1997 .

[33]  B. Mattiasson,et al.  Lipase catalyzed esterification of lactic acid , 1997, Biotechnology Letters.

[34]  G J Kleywegt,et al.  Crystallographic and molecular-modeling studies of lipase B from Candida antarctica reveal a stereospecificity pocket for secondary alcohols. , 1995, Biochemistry.

[35]  T A Jones,et al.  The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. , 1994, Structure.

[36]  M. Schülein,et al.  PURIFICATION OF TWO LIPASES FROM CANDIDA ANTARCTICA AND THEIR INHIBITION BY VARIOUS INHIBITORS , 1993 .

[37]  L. Thim,et al.  A structural domain (the lid) found in pancreatic lipases is absent in the guinea pig (phospho)lipase. , 1993, Biochemistry.

[38]  Joel L. Sussman,et al.  The α/β hydrolase fold , 1992 .

[39]  Aviva Rappaport,et al.  A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa , 1991 .

[40]  L. Thim,et al.  Rhizomucor miehei triglyceride lipase is processed and secreted from transformedAspergillus oryzae , 1989, Lipids.

[41]  L. Thim,et al.  High Level Expression of Recombinant Genes in Aspergillus Oryzae , 1988, Bio/Technology.

[42]  R. Saiki,et al.  A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. , 1988, Nucleic acids research.

[43]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[44]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[45]  Ole Kirk,et al.  One Biocatalyst–Many Applications: The Use of Candida Antarctica B-Lipase in Organic Synthesis , 1998 .

[46]  I. G. Clausen,et al.  [19] Protein engineering of microbial lipases of industrial interest , 1997 .

[47]  J. Schrag,et al.  Lipases and alpha/beta hydrolase fold. , 1997, Methods in enzymology.

[48]  S. Godtfredsen,et al.  Enzyme Catalysed Preparation of 6-O-Acylglucopyranosides , 1990 .