Using interactive evolutionary computation (IEC) with validated surrogate fitness functions for redistricting

We describe a novel use of evolutionary computation to discover good districting plans for the Philadelphia City Council. We were able to discover 116 distinct, high quality, legally valid plans. These constitute a rich resource on which stakeholders may base deliberation. The exercise raised the issue of how to deal with large numbers of plans, especially with the aim of avoiding gerrymandering and promoting fairness. Interactive Evolutionary Computation (IEC) is a natural approach here, if practicable. The paper proposes development of Validated Surrogate Fitness (VSF) functions as a workable and generalizable form of IEC.

[1]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[2]  Takao Terano,et al.  Knowledge acquisition from questionnaire data using simulated breeding and inductive learning methods , 1996 .

[3]  Peter J. Bentley,et al.  Aspects of Evolutionary Design by Computers , 1998, ArXiv.

[4]  Hitoshi Iba,et al.  Interactive evolutionary computation , 2009, New Generation Computing.

[5]  Jon McCormack,et al.  Evolutionary L-systems , 2008 .

[6]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[7]  Stefan Nickel,et al.  Towards a unified territorial design approach — Applications, algorithms and GIS integration , 2005 .

[8]  H. Young Measuring the Compactness of Legislative Districts , 1988 .

[9]  Panagiotis G. Ipeirotis,et al.  Running Experiments on Amazon Mechanical Turk , 2010, Judgment and Decision Making.

[10]  Gilbert Laporte,et al.  A tabu search heuristic and adaptive memory procedure for political districting , 2003, Eur. J. Oper. Res..

[11]  Carlos García-Martínez,et al.  Iterated greedy for the maximum diversity problem , 2011, Eur. J. Oper. Res..

[12]  Peter Huang,et al.  Providing an appropriate search space to solve the fatigue problem in interactive evolutionary computation , 2009, New Generation Computing.

[13]  Fernando Bação,et al.  Applying genetic algorithms to zone design , 2005, Soft Comput..

[14]  Thomas Stützle,et al.  A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem , 2007, Eur. J. Oper. Res..

[15]  F. Murphy,et al.  Solution Pluralism and Metaheuristics , 2011 .

[16]  Carlos M. Fonseca,et al.  Graph partitioning through a multi-objective evolutionary algorithm: a preliminary study , 2008, GECCO '08.

[17]  Jan E. Leighley Politics , 2013 .

[18]  Bruno Simeone,et al.  Local search algorithms for political districting , 2008, Eur. J. Oper. Res..

[19]  Elena Fernández,et al.  A reactive GRASP for a commercial territory design problem with multiple balancing requirements , 2009, Comput. Oper. Res..

[20]  Risto Miikkulainen,et al.  A Taxonomy for Artificial Embryogeny , 2003, Artificial Life.

[21]  C. Douglas Painting by Numbers: Komar and Melamid's Scientific Guide to Art. Ed. JoAnn Wypijewski. New York: Farrar Straus Giroux, 1997. 205 pp. Appendix. Plates. $50.00, hard bound. , 2000 .

[22]  Micah Altman,et al.  Is automation the answer: the computational complexity of automated redistricting , 1997 .

[23]  H. C. Lau,et al.  Finding robust-under-risk solutions for flowshop scheduling , 2011 .