Effective Thermal Conductivity Modeling of Sandstones: SVM Framework Analysis

Among the most significant physical characteristics of porous media, the effective thermal conductivity (ETC) is used for estimating the thermal enhanced oil recovery process efficiency, hydrocarbon reservoir thermal design, and numerical simulation. This paper reports the implementation of an innovative least square support vector machine (LS-SVM) algorithm for the development of enhanced model capable of predicting the ETCs of dry sandstones. By means of several statistical parameters, the validity of the presented model was evaluated. The prediction of the developed model for determining the ETCs of dry sandstones was in excellent agreement with the reported data with a coefficient of determination value ($${R}^{2})$$R2) of 0.983 and an average absolute relative deviation of 0.35 %. Results from present research show that the proposed LS-SVM model is robust, reliable, and efficient in calculating the ETCs of sandstones.

[1]  Milad Arabloo,et al.  Robust Modeling Approach for Estimation of Compressibility Factor in Retrograde Gas Condensate Systems , 2014 .

[2]  Françoise Homand,et al.  Effective thermal conductivity of partially saturated porous rocks , 2007 .

[3]  D. Poulikakos,et al.  On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam , 2001 .

[4]  Paul G. Klemens,et al.  Lattice thermal conductivity of minerals at high temperatures , 1974 .

[5]  Amir H. Mohammadi,et al.  Efficient estimation of natural gas compressibility factor using a rigorous method , 2014 .

[6]  Chin Tsau Hsu,et al.  A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media , 1995 .

[7]  Jingtao Yao,et al.  An Enhanced Support Vector Machine Model for Intrusion Detection , 2006, RSKT.

[8]  I. Kukkonen,et al.  Temperature and Pressure Dependencies of Thermal Transport Properties of Rocks: Implications for Uncertainties in Thermal Lithosphere Models and new Laboratory Measurements of High-Grade Rocks in the Central Fennoscandian Shield , 1999 .

[9]  A. Elkamel,et al.  Asphaltene precipitation and deposition in oil reservoirs –technical aspects, experimental and hybrid neural network predictive tools , 2014 .

[10]  Afif Hasan,et al.  Optimizing insulation thickness for buildings using life cycle cost , 1999 .

[11]  Robert W. Zimmerman,et al.  Thermal conductivity of fluid-saturated rocks , 1989 .

[12]  Davut Hanbay,et al.  Application of least square support vector machines in the prediction of aeration performance of plunging overfall jets from weirs , 2009, Expert Syst. Appl..

[13]  G. Wei,et al.  Two Effective Thermal Conductivity Models for Porous Media with Hollow Spherical Agglomerates , 2006 .

[14]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[15]  Johan A. K. Suykens,et al.  Coupled Simulated Annealing , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  U. Seipold TEMPERATURE DEPENDENCE OF THERMAL TRANSPORT PROPERTIES OF CRYSTALLINE ROCKS : A GENERAL LAW , 1998 .

[17]  W. H. Somerton Thermal Properties and Temperature-Related Behavior of Rock/Fluid Systems , 1992 .

[18]  A Sugawara,et al.  An Investigation on the Thermal Conductivity of Porous Materials and its Application to Porous Rook , 1961 .

[19]  Mahmood Amani,et al.  Implementation of SVM framework to estimate PVT properties of reservoir oil , 2013 .

[20]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[21]  D. Mowla,et al.  Modeling and analysis of effective thermal conductivity of sandstone at high pressure and temperature using optimal artificial neural networks , 2014 .

[22]  A. Sasaki,et al.  A Study on the Thermophysical Properties of a Soil , 1987 .

[23]  Farhad Gharagheizi,et al.  Toward a predictive model for estimating dew point pressure in gas condensate systems , 2013 .

[24]  Dominique Jeulin,et al.  Effective thermal conductivity of heterogeneous materials : calculation methods and application to different microstructures , 2001 .

[25]  F. I. Jr. Stalkup,et al.  Status of Miscible Displacement , 1983 .

[26]  Shahin Rafiee-Taghanaki,et al.  SVM modeling of the constant volume depletion (CVD) behavior of gas condensate reservoirs , 2014 .

[27]  S. N. Emirov,et al.  Thermal conductivity of sandstone at high pressures and temperatures , 2007 .

[28]  Kaichi Sekiguchi A method for determining terrestrial heat flow in oil basinal areas , 1984 .

[29]  V. R. Puttagunta,et al.  Modelling Viscosity and Mass Fraction of Bitumen-Diluent Mixtures , 2001 .

[30]  I. M. Abdulagatov,et al.  Effect of temperature and pressure on the thermal conductivity of sandstone , 2009 .

[31]  Alireza Bahadori,et al.  Application of soft computing approaches for modeling saturation pressure of reservoir oils , 2014 .

[32]  Salvatore Torquato,et al.  Effective conductivity of periodic arrays of spheres with interfacial resistance , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Lior Rokach,et al.  Data Mining And Knowledge Discovery Handbook , 2005 .

[34]  M. Deguchi,et al.  Derivation of a correlation formula for the effective thermal conductivity of geological porous materials by the three-phase geometric-mean model , 1998 .

[35]  Alireza Bahadori,et al.  Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units , 2014 .

[36]  Joseph Majdalani,et al.  Effective thermal conductivity of common geometric shapes , 2005 .

[37]  Chin Tsau Hsu,et al.  Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media , 1994 .

[38]  Nian Shong Chok PEARSON'S VERSUS SPEARMAN'S AND KENDALL'S CORRELATION COEFFICIENTS FOR CONTINUOUS DATA , 2010 .

[39]  C. Clauser,et al.  Thermal Conductivity of Rocks and Minerals , 2013 .

[40]  J. D. Scott,et al.  Thermal Property Measurements On Oil Sands , 1986 .

[41]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[42]  C. Chan,et al.  Conductance of packed spheres in vacuum , 1973 .

[43]  J. Abedi,et al.  Physical Properties and Extraction Measurements for the Athabasca Bitumen + Light Hydrocarbon System: Evaluation of the Pressure Effect, Solvent-to-Bitumen Ratio, and Solvent Type , 2011 .

[44]  Milad Arabloo,et al.  Laccase immobilized manganese ferrite nanoparticle: synthesis and LSSVM intelligent modeling of decolorization. , 2014, Water research.

[45]  Elif Derya íbeyli Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals , 2010 .

[46]  Amin Shokrollahi,et al.  State-of-the-Art Least Square Support Vector Machine Application for Accurate Determination of Natural Gas Viscosity , 2014 .

[47]  Tung-Shou Chen,et al.  A Novel Knowledge Protection Technique Base on Support Vector Machine Model for Anti-classification , 2011 .

[48]  I. Abdulagatov,et al.  Effect of pressure and temperature on the thermal conductivity of rocks , 2006 .

[49]  Ilmutdin M. Abdulagatov,et al.  Effect of pressure, temperature, and oil-saturation on the thermal conductivity of sandstone up to 250 MPa and 520 K , 2010 .

[50]  Sohrab Zendehboudi,et al.  A new screening tool for evaluation of steamflooding performance in Naturally Fractured Carbonate Reservoirs , 2013 .

[51]  T. Keller,et al.  Modelling the poroelasticity of rocks and ice , 1999 .

[52]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[53]  H. Waff Theoretical considerations of electrical conductivity in a partially molten mantle and implications for geothermometry , 1974 .

[54]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[55]  D. Kunii,et al.  Heat transfer characteristics of porous rocks , 1960 .

[56]  H. Fricke,et al.  A Mathematical Treatment of the Electric Conductivity and Capacity of Disperse Systems I. The Electric Conductivity of a Suspension of Homogeneous Spheroids , 1924 .