Sparse-promoting Full Waveform Inversion based on Online Orthonormal Dictionary Learning

Full waveform inversion (FWI) delivers high-resolution images of the subsurface by minimizing iteratively the misfit between the recorded and calculated seismic data. It has been attacked successfully with the Gauss-Newton method and sparsity promoting regularization based on fixed multiscale transforms that permit significant subsampling of the seismic data when the model perturbation at each FWI data-fitting iteration can be represented with sparse coefficients. Rather than using analytical transforms with predefined dictionaries to achieve sparse representation, we introduce an adaptive transform called the Sparse Orthonormal Transform (SOT) whose dictionary is learned from many small training patches taken from the model perturbations in previous iterations. The patch-based dictionary is constrained to be orthonormal and trained with an online approach to provide the best sparse representation of the complex features and variations of the entire model perturbation. The complexity of the training method is proportional to the cube of the number of samples in one small patch. By incorporating both compressive subsampling and the adaptive SOT-based representation into the Gauss-Newton least-squares problem for each FWI iteration, the model perturbation can be recovered after an l1-norm sparsity constraint is applied on the SOT coefficients. Numerical experiments on synthetic models demonstrate that the SOT-based sparsity promoting regularization can provide robust FWI results with reduced computation.

[1]  A. Tarantola Inversion of seismic reflection data in the acoustic approximation , 1984 .

[2]  Jian-Feng Cai,et al.  Data-driven tight frame construction and image denoising , 2014 .

[3]  Ru-Shan Wu,et al.  Scattering characteristics of elastic waves by an elastic heterogeneity , 1985 .

[4]  Yücel Altunbasak,et al.  Approximation and Compression With Sparse Orthonormal Transforms , 2015, IEEE Transactions on Image Processing.

[5]  S. Operto,et al.  Fast full waveform inversion with source encoding and second-order optimization methods , 2015 .

[6]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[7]  James H. McClellan,et al.  Seismic data denoising through multiscale and sparsity-promoting dictionary learning , 2015 .

[8]  James H. McClellan,et al.  Fast online orthonormal dictionary learning for efficient full waveform inversion , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  C. Shin,et al.  Comparison of scaling methods for waveform inversion , 2009 .

[10]  Felix J. Herrmann,et al.  Fighting the Curse of Dimensionality: Compressive Sensing in Exploration Seismology , 2012, IEEE Signal Processing Magazine.

[11]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[12]  C. Bunks,et al.  Multiscale seismic waveform inversion , 1995 .

[13]  A. Tarantola A strategy for nonlinear elastic inversion of seismic reflection data , 1986 .

[14]  Jean Virieux,et al.  An overview of full-waveform inversion in exploration geophysics , 2009 .

[15]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[16]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[17]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[18]  Michael Elad,et al.  Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model , 2013, IEEE Transactions on Signal Processing.

[19]  Hicks,et al.  Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion , 1998 .

[20]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[21]  Felix J. Herrmann,et al.  Modified Gauss-Newton full-waveform inversion explained — Why sparsity-promoting updates do matter , 2016 .

[22]  E. Candès,et al.  The curvelet representation of wave propagators is optimally sparse , 2004, math/0407210.

[23]  I. Daubechies,et al.  Tomographic inversion using L1-norm regularization of wavelet coefficients , 2006, physics/0608094.

[24]  R. Plessix,et al.  Frequency-domain finite-difference amplitude-preserving migration , 2004 .

[25]  Kristopher A. Innanen,et al.  Efficient pseudo-Gauss-Newton full-waveform inversion in the τ-p domain , 2015 .

[26]  Hejun Zhu,et al.  Full Waveform Inversion with Sparsity Constraint in Seislet Domain , 2015 .

[27]  Huazhong Wang,et al.  Least-squares reverse time migration in frequency domain using the adjoint-state method , 2013 .

[28]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[29]  Ludovic Métivier,et al.  Combining asymptotic linearized inversion and full waveform inversion , 2015 .

[30]  R. Gerhard Pratt,et al.  Efficient waveform inversion and imaging: A strategy for selecting temporal frequencies , 2004 .

[31]  Jean Virieux,et al.  An efficient frequency-domain full waveform inversion method using simultaneous encoded sources , 2011 .

[32]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[33]  J. Krebs,et al.  Fast full-wavefield seismic inversion using encoded sources , 2009 .

[34]  R. G. Pratt,et al.  Full waveform tomography for lithospheric imaging: results from a blind test in a realistic crustal model , 2007 .

[35]  Felix J. Herrmann,et al.  Seismic Waveform Inversion by Stochastic Optimization , 2011 .

[36]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[37]  D. Field,et al.  Natural image statistics and efficient coding. , 1996, Network.

[38]  M. Warner,et al.  Anisotropic 3D full-waveform inversion , 2013 .

[39]  Louis A. Romero,et al.  Phase encoding of shot records in prestack migration , 2000 .

[40]  Michael Elad,et al.  Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation , 2010, IEEE Transactions on Signal Processing.

[41]  P. Schönemann,et al.  A generalized solution of the orthogonal procrustes problem , 1966 .

[42]  Mauricio D. Sacchi,et al.  Interpolation and denoising of high-dimensional seismic data by learning a tight frame , 2015 .

[43]  Fionn Murtagh,et al.  Sparse Image and Signal Processing: Wavelets and Related Geometric Multiscale Analysis, Second Edition , 2015 .

[44]  Aria Abubakar,et al.  Source-receiver compression scheme for full-waveform seismic inversion , 2011 .

[45]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[46]  Jianwei Ma,et al.  Simultaneous dictionary learning and denoising for seismic data , 2014 .

[47]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[48]  Felix J. Herrmann,et al.  A modified, sparsity-promoting, Gauss-Newton algorithm for seismic waveform inversion , 2011, Optical Engineering + Applications.

[49]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[50]  Xiang Li,et al.  Efficient least‐squares imaging with sparsity promotion and compressive sensing , 2012 .

[51]  William W. Symes,et al.  Migration velocity analysis and waveform inversion , 2008 .

[52]  Felix J. Herrmann,et al.  Curvelet-based seismic data processing : A multiscale and nonlinear approach , 2008 .

[53]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[54]  G. Chavent,et al.  An optimal true-amplitude least-squares prestack depth-migration operator , 1999 .

[55]  Felix J. Herrmann,et al.  Seismic denoising with nonuniformly sampled curvelets , 2006, Computing in Science & Engineering.

[56]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[57]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[58]  R. Pratt Seismic waveform inversion in the frequency domain; Part 1, Theory and verification in a physical scale model , 1999 .

[59]  Gary J. Sullivan,et al.  Rate-distortion optimization for video compression , 1998, IEEE Signal Process. Mag..

[60]  Ludovic Métivier,et al.  Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation , 2015 .

[61]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[62]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[63]  T. Leeuwen,et al.  Fast randomized full-waveform inversion with compressive sensing , 2012 .

[64]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[65]  Felix J. Herrmann,et al.  Application of randomized sampling schemes to curvelet-based sparsity-promoting seismic data recovery , 2013 .

[66]  José Mario Martínez,et al.  Spectral Projected Gradient Methods: Review and Perspectives , 2014 .

[67]  C. Shin,et al.  Improved amplitude preservation for prestack depth migration by inverse scattering theory , 2001 .

[68]  Gregory Beylkin,et al.  Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform , 1985 .

[69]  operatorGuy Chavent,et al.  An optimal true amplitude least squares prestack depthmigration , 1998 .

[70]  Osman Gokhan Sezer,et al.  Data-driven transform optimization for next generation multimedia applications , 2011 .

[71]  Eytan Domany,et al.  The Born approximation in the theory of the scattering of elastic waves by flaws , 1977 .

[72]  A. Guitton,et al.  Attenuating crosstalk noise with simultaneous source full waveform inversion ★ , 2012 .

[73]  Laurent Demanet,et al.  Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..

[74]  D. Hale,et al.  Image-guided sparse-model full waveform inversion , 2012 .

[75]  David L. Donoho,et al.  Precise Undersampling Theorems , 2010, Proceedings of the IEEE.

[76]  Jonathan B. Ajo-Franklin,et al.  Frequency-Domain Modeling Techniques for the Scalar Wave Equation : An Introduction , 2005 .

[77]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[78]  Mark W. Schmidt,et al.  Optimizing Costly Functions with Simple Constraints: A Limited-Memory Projected Quasi-Newton Algorithm , 2009, AISTATS.

[79]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[80]  D. Komatitsch,et al.  An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation , 2007 .