Thermodynamic Evaluation and Optimization of the Ag-As-S system

[1]  A. Kusior,et al.  TRANSITION METAL SULFIDES FOR ELECTROCHEMICAL APPLICATIONS: CONTROLLED CHEMICAL CONVERSION OF CuS TO Ag2S , 2022, Applied Surface Science.

[2]  S. R. Mannopantar,et al.  Growth and characterization of Ag2S semiconductor nanoparticles , 2022, Materials Today: Proceedings.

[3]  A. Gusev,et al.  Polymorphic Phase Transformations in Nanocrystalline Ag2S Silver Sulfide in a Wide Temperature Interval and Influence of Nanostructured Ag2S on the Interface Formation in Ag2S/ZnS Heteronanostructure , 2022, Nanomaterials.

[4]  M. Pérez-Tello,et al.  Behavior of As/AsxSy in Neutral and Oxidizing Atmospheres at High Temperatures—An Overview , 2022, Metals.

[5]  Zi-kui Liu,et al.  Zentropy Theory for Positive and Negative Thermal Expansion , 2021, Journal of Phase Equilibria and Diffusion.

[6]  E. Jak,et al.  Thermodynamic optimization of the As–S system , 2021 .

[7]  Xiaobo Min,et al.  Stabilization mechanism of arsenic-sulfide slag by density functional theory calculation of arsenic-sulfide clusters. , 2020, Journal of hazardous materials.

[8]  G. Flores,et al.  Processing of Complex Materials in the Copper Industry: Challenges and Opportunities Ahead , 2020, JOM.

[9]  R. Marriott,et al.  Viscoelastic behavior corresponding to reptative relaxation times across the λ-transition for liquid elemental sulfur. , 2020, The Journal of chemical physics.

[10]  Fan Zhang,et al.  Study of glass transition kinetics of As 2 S 3 and As 2 Se 3 by ultrafast differential scanning calorimetry , 2019, Chinese Physics B.

[11]  Q. Du,et al.  Thermodynamic descriptions of the Ag-X (X = S, As, Lu) systems , 2018, Calphad.

[12]  A. Gusev,et al.  Effect of small size of particles on thermal expansion and heat capacity of Ag2S silver sulfide , 2018 .

[13]  P. Waldner Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases , 2017, Metallurgical and Materials Transactions B.

[14]  L. Ciacci,et al.  Copper demand, supply, and associated energy use to 2050 , 2016 .

[15]  L. Bindi,et al.  From ancient pigments to modern optoelectronic applications of arsenic sulfides: bonazziite, the natural analogue of β-As4S4 from Khaidarkan deposit, Kyrgyzstan , 2015, Mineralogical Magazine.

[16]  Gavin M. Mudd,et al.  Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining , 2014 .

[17]  M. Sokić,et al.  Kinetic investigation of silver sulfide phase transformations , 2013 .

[18]  A. Gavezzotti,et al.  Polymorphism of As4S3 (tris-(μ2-sulfido)-tetra-arsenic): accurate structure refinement on natural α- and β-dimorphites and inferred room temperature thermodynamic properties , 2013, Physics and Chemistry of Minerals.

[19]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases - recent developments , 2009 .

[20]  Sangsig Kim,et al.  Synthesis and electrical characteristics of Ag2S nanocrystals , 2008 .

[21]  T. Balakumar,et al.  Undulate phase boundaries on binary T-x diagrams , 2008 .

[22]  S. Bhattacharya,et al.  Resistivity hysteresis of Ag2S nanocomposites , 2007 .

[23]  V. Piacente,et al.  Torsion Measurement of Orpiment Vapor Pressure , 2007 .

[24]  P. Espeau,et al.  Solid state studies on synthetic and natural crystalline arsenic(III) sulfide, As2S3 (orpiment) : New data for an old compound , 2006 .

[25]  FuekiKazuo,et al.  Solubility and Diffusion Coefficient of Sulfur in Silver , 2006 .

[26]  Patrice Chartrand,et al.  The modified quasi-chemical model: Part II. Multicomponent solutions , 2001 .

[27]  Gunnar Eriksson,et al.  The modified quasichemical model I—Binary solutions , 2000 .

[28]  A. Pelton,et al.  Thermodynamic optimization of the selenium-arsenic (Se-As) system , 1997 .

[29]  A. Owen,et al.  Optically induced crystal-to-amorphous-state transition in As2S3 , 1995 .

[30]  I. Barin Thermochemical data of pure substances , 1989 .

[31]  O. J. Kleppa,et al.  Standard molar enthalpies of formation of realgar (α-AsS) and orpiment (As2S3) by high-temperature direct-synthesis calorimetry , 1988 .

[32]  F. Grønvold,et al.  Silver(I) sulfide: Ag2S Heat capacity from 5 to 1000 K, thermodynamic properties, and transitions , 1986 .

[33]  H. Okazaki,et al.  The Specific Heat of Ag2S in ɑ-phase , 1985 .

[34]  K. Itagaki,et al.  Measurements of thermodynamic quantities for molten Ag2S-Sb2S3 and Cu2S-Ni3S2 systems by quantitative thermodynamic analysis , 1984 .

[35]  E. Gmelin,et al.  Heat Capacity Study of the Phase Transitions in AS4S3 and As4S4 , 1983, April 16.

[36]  Dorothea Lüdecke,et al.  Thermodynamic activity from quasiisopiestic measurements in α-Ag-As and α-Cu-As , 1983 .

[37]  A. Jayaraman,et al.  Effect of temperature and pressure on the raman spectrum of As4S3 , 1982 .

[38]  Z. Kozuka,et al.  Measurement of the Thermodynamic Quantities for the Ag-S System by the E.M.F. Method , 1981 .

[39]  R. Blachnik,et al.  Phasenbeziehungen im System Ag-As-S und thermochemisches Verhalten von Ag7MX6-Verbindungen (M = P, As, Sb; X = S, Se) / Phase Relations in the System Ag-As-S and Thermal Behaviour of Ag7MX6 Compounds , 1980 .

[40]  C. Johnson,et al.  The enthalpies of formation and high-temperature thermodynamic functions of As4S4 and As2S3 , 1980 .

[41]  H. Reye Zustandsdiagramm Ag—S im Bereich der Verbindung Ag2±δS , 1980 .

[42]  R. Blachnik,et al.  Die Systeme Arsen‐Schwefel und Arsen‐Selen und die thermodynamischen Daten ihrer Verbindungen , 1980 .

[43]  B. Gather,et al.  Temperature-composition diagrams in the Ag2 (VIb)-(Vb) sections of the ternary Ag-(Vb)-(VIb) systems , 1978 .

[44]  A. Lichanot,et al.  Proprietes electroniques et electrogalvaniques du tellurure d'argent α domaine d'existence , 1978 .

[45]  M. Janai,et al.  Mass spectrometric analysis of arsenic trisulfide , 1978 .

[46]  A. Lichanot,et al.  Proprietes electrogalvaniques et electroniques du sulfure d'argent β: Domaine d'existence , 1977 .

[47]  V. P. Shilo,et al.  Anisotropy of some physical parameters in As-prepared As2S3 bulk glass , 1977 .

[48]  I. Barin,et al.  Thermochemical properties of inorganic substances , 1973 .

[49]  A. Rogstad High-temperature laser Raman spectroscopic study on mixtures of arsenic and sulphur vapours , 1972 .

[50]  R. Blachnik,et al.  Schmelzenthalpien von einigen ABX2 - Verbindungen / Enthalpies of Melting of Some Ternary ABX2-Compounds , 1972 .

[51]  G. Sheldrick,et al.  Crystal structure of a new crystalline modification of tetra-arsenic tetrasulphide(2,4,6,8-tetrathia-1,3,5,7-tetra-arsatricyclo[3,3,0,03,7]-octane) , 1972 .

[52]  H. F. Winters,et al.  Mass‐Spectrometric and Vapor Pressure Studies on the Sublimation of Realgar (As4S4) , 1971 .

[53]  R. Seidensticker,et al.  A coprecipitation mechanism to explain Ag7AsS6 inclusions in proustite (Ag3AsS3) crystals , 1971 .

[54]  C. Patterson Native Copper, Silver, and Gold Accessible to Early Metallurgists , 1971, American Antiquity.

[55]  W. Thompson,et al.  Drop Calorimetric Measurements on some Chlorides, Sulfides, and Binary Melts , 1971 .

[56]  Z. A. Munir,et al.  The structure and thermal properties of synthetic realgar (As4S4) , 1970 .

[57]  M. B. Myers,et al.  Heats of Fusion of the A 2 V B 3 VI Compounds As2 S3, As2 Se3, As2 Te3, and Sb2 S3 , 1970 .

[58]  G. Roland Phase relations below 575 degrees C in the system Ag-As-S , 1970 .

[59]  M. Tanaka,et al.  Heat capacities of AsS glasses , 1970 .

[60]  V. S. Ban,et al.  Mass-spectrometric study of the laser-induced vaporization of compounds of arsenic and antimony with the elements of group VIA , 1970 .

[61]  H. Whitfield The crystal structure of tetra-arsenic trisulphide , 1970 .

[62]  P. Barton Thermochemical study of the system Fe-As-S , 1969 .

[63]  N. Fletcher,et al.  Heat Capacity of Silver Sulfide , 1969 .

[64]  A. Ward,et al.  Raman spectroscopy of sulfur, sulfur-selenium, and sulfur-arsenic mixtures , 1968 .

[65]  J. Shiever,et al.  The system Ag2SAs2S3 and the growth of crystals of proustite, smithite and pyrargyrite , 1968 .

[66]  M. M. Faktor,et al.  Thermal analysis of proustite , 1968 .

[67]  W. Jost,et al.  Spezifische Wärmen von Silber- und Kupfer(I)-Chalkogeniden von −70°C bis zu 550°C , 1968 .

[68]  R. Sadanaga,et al.  X-RAY STUDY ON THE ^|^alpha;-^|^beta; TRANSITION OF Ag2S , 1967 .

[69]  B. Skinner The system Cu-Ag-S , 1966 .

[70]  H. Bielen Bestimmungen von Dissoziationsdampfdrucken fester Verbindungen nach der Anlaufmethode. IV. Schwefeltensionen einiger Schwermetallsulfide , 1965 .

[71]  F. C. Lin,et al.  Chemical Durability of Arsenic‐Sulfur‐Iodine Glasses , 1963 .

[72]  P. N. Walsh,et al.  THE HEAT CAPACITY OF THE SILVER CHALCOGENIDES, Ag1.99S, Ag1.99Se, AND Ag1.88Te FROM 16 TO 300°K.1 , 1962 .

[73]  H. W. King,et al.  Lattice spacing relationships and the electronic structure of H.C.P. ζ phases based on silver , 1961 .

[74]  L. A. Clark The Fe-As-S system--Phase relations and applications , 1960 .

[75]  Rustum Roy,et al.  The Ag 2 S and Ag 2 Se transitions as geologic thermometers , 1959 .

[76]  J. Wernick,et al.  Crystallographic Data 166. Synthetic Proustite, Ag3AsS3 , 1958 .

[77]  M. Hansen,et al.  Constitution of Binary Alloys , 1958 .

[78]  A. Frueh The Crystallography of Silver Sulfide, Ag2S , 1958 .

[79]  C. Wagner,et al.  Measurements on Galvanic Cells Involving Solid Electrolytes , 1957 .

[80]  J. H. Wernick,et al.  New semiconducting ternary compounds , 1957 .

[81]  C. Wagner Investigations on Silver Sulfide , 1953 .

[82]  E. Kordes,et al.  Bestimmung der Schwefeltensionen von Schwermetallsulfiden durch Beobachtung des Anlaufens von Metallen im H2/H2S-Gasgemisch , 1952 .

[83]  A. G. Cole,et al.  Thermodynamic Properties of Silver Sulfide1 , 1951 .

[84]  J. Donohue,et al.  An Electron Diffraction Investigation of Sulfur Nitride, Arsenic Disulfide (Realgar), Arsenic Trisulfide (Orpiment) and Sulfur , 1944 .

[85]  A. Gaudin,et al.  Sulphide silver minerals; a contribution to their pyrosynthesis and to their identification by selective iridescent filming , 1938 .

[86]  W. Roth,et al.  Die Bildungswärme einiger Sulfide , 1935 .

[87]  K. Kelley,et al.  A New Method for Extrapolating Specific Heat Curves of Organic Compounds below the Temperatures of Liquid Air , 1928 .

[88]  K. Jellinek,et al.  Über die Affinität der Metalle zum Schwefel , 1925 .

[89]  F. G. Keyes,et al.  THE EQUILIBRIUM CONDITIONS OF THE REACTION BETWEEN SILVER SULFIDE AND HYDROGEN. , 1920 .

[90]  W. Heike,et al.  Das Erstarrungsbild der Silber-Arsen-Legierungen , 1915 .

[91]  W. Truthe Über das Verhalten der Sulfide von Ph, Cu., Ag und des Cu2 in den Schmelzen der zugehörigen Chloride , 1912 .

[92]  W. Jonker Untersuchungen über das System: Schwefel und Arsen , 1909 .

[93]  H. Sommerlad Über Versuche zur Darstellung von Sulfantimoniten und Sulfarseniten des Silbers, Kupfers und Bleis auf trockenem Wege , 1898 .

[94]  E. Szarvasy,et al.  Ueber die Molekulargrösse der Arsenamphid-Verbindungen , 1897 .

[95]  G. Gadd,et al.  Arsenic Toxicity: An Arsenic-Hyperaccumulating Fern Uses a Bacterial-like Tolerance Mechanism , 2019, Current Biology.