Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach.

[1]  P. Tonge,et al.  Synthesis of 4-phenoxybenzamide adenine dinucleotide as NAD analogue with inhibitory activity against enoyl-ACP reductase (InhA) of Mycobacterium tuberculosis. , 2007, Bioorganic & medicinal chemistry letters.

[2]  Matthew W Vetting,et al.  New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP. , 2007, Journal of the American Chemical Society.

[3]  H. Gornitzka,et al.  Ring–Chain Tautomerism of Simplified Analogues of Isoniazid–NAD(P) Adducts: an Experimental and Theoretical Study , 2007 .

[4]  V. Bernardes-Génisson,et al.  Synthesis of the isonicotinoylnicotinamide scaffolds of the naturally occurring isoniazid-NAD(P) adducts. , 2007, The Journal of organic chemistry.

[5]  Matthew W Vetting,et al.  Mycobacterium tuberculosis dihydrofolate reductase is a target for isoniazid , 2006, Nature Structural &Molecular Biology.

[6]  Kerly F. M. Pasqualoto,et al.  Molecular dynamics simulations of a set of isoniazid derivatives bound to InhA, the enoyl‐acp reductase from M. tuberculosis , 2006 .

[7]  V. Bernardes-Génisson,et al.  The first chemical synthesis of the core structure of the benzoylhydrazine-NAD adduct, a competitive inhibitor of the Mycobacterium tuberculosis enoyl reductase. , 2005, The Journal of organic chemistry.

[8]  R. Villar,et al.  Are AM1 ligand‐protein binding enthalpies good enough for use in the rational design of new drugs? , 2005, J. Comput. Chem..

[9]  O. N. de Souza,et al.  Molecular dynamics simulation studies of the wild-type, I21V, and I16T mutants of isoniazid-resistant Mycobacterium tuberculosis enoyl reductase (InhA) in complex with NADH: toward the understanding of NADH-InhA different affinities. , 2005, Biophysical journal.

[10]  H. Gornitzka,et al.  Studies on the 4-benzoylpyridine-3-carboxamide entity as a fragment model of the Isoniazid-NAD adduct. , 2005, Organic & biomolecular chemistry.

[11]  V. Bernardes-Génisson,et al.  1H and 13C NMR characterization of pyridinium-type isoniazid-NAD adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. , 2005, Organic & biomolecular chemistry.

[12]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[13]  Anton J Hopfinger,et al.  Rational design of new antituberculosis agents: receptor-independent four-dimensional quantitative structure-activity relationship analysis of a set of isoniazid derivatives. , 2004, Journal of medicinal chemistry.

[14]  Peter J. Tonge,et al.  The isoniazid-NAD adduct is a slow, tight-binding inhibitor of InhA, the Mycobacterium tuberculosis enoyl reductase: Adduct affinity and drug resistance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Z. Jia,et al.  Computational study on the function of water within a beta-helix antifreeze protein dimer and in the process of ice-protein binding. , 2003, Biophysical journal.

[16]  Alessandro Pedretti,et al.  VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs. , 2002, Journal of molecular graphics & modelling.

[17]  M. Nguyen,et al.  Mn(III) Pyrophosphate as an Efficient Tool for Studying the Mode of Action of Isoniazid on the InhA Protein of Mycobacterium tuberculosis , 2002, Antimicrobial Agents and Chemotherapy.

[18]  Xiayang Qiu,et al.  Discovery of aminopyridine-based inhibitors of bacterial enoyl-ACP reductase (FabI). , 2002, Journal of medicinal chemistry.

[19]  D. Fidock,et al.  Structural Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase* , 2002, The Journal of Biological Chemistry.

[20]  M. Nguyen,et al.  Is the isonicotinoyl radical generated during activation of isoniazid by Mn III -pyrophosphate? , 2002 .

[21]  M. Nguyen,et al.  A Fast and Efficient Metal‐Mediated Oxidation of Isoniazid and Identification of Isoniazid–NAD(H) Adducts , 2001, Chembiochem : a European journal of chemical biology.

[22]  S. Parikh,et al.  Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. , 2000, Biochemistry.

[23]  H. Marrakchi,et al.  InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. , 2000, Microbiology.

[24]  B. Lei,et al.  Action Mechanism of Antitubercular Isoniazid , 2000, The Journal of Biological Chemistry.

[25]  S. Parikh,et al.  Roles of tyrosine 158 and lysine 165 in the catalytic mechanism of InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis. , 1999, Biochemistry.

[26]  Wilming,et al.  Spontaneous Formation of the Bioactive Form of the Tuberculosis Drug Isoniazid. , 1999, Angewandte Chemie.

[27]  C. Vilchèze,et al.  Crystal Structure of the Mycobacterium tuberculosis Enoyl-ACP Reductase, InhA, in Complex with NAD+ and a C16 Fatty Acyl Substrate* , 1999, The Journal of Biological Chemistry.

[28]  K. Morokuma,et al.  A NEW ONIOM IMPLEMENTATION IN GAUSSIAN98. PART I. THE CALCULATION OF ENERGIES, GRADIENTS, VIBRATIONAL FREQUENCIES AND ELECTRIC FIELD DERIVATIVES , 1999 .

[29]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998, J. Comput. Chem..

[30]  K. Drlica,et al.  Role of Superoxide in Catalase-Peroxidase-Mediated Isoniazid Action against Mycobacteria , 1998, Antimicrobial Agents and Chemotherapy.

[31]  J. Sacchettini,et al.  Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. , 1998, Science.

[32]  P. Schultz,et al.  Overexpression, Purification, and Characterization of the Catalase-peroxidase KatG from Mycobacterium tuberculosis* , 1997, The Journal of Biological Chemistry.

[33]  M. Sanner,et al.  Reduced surface: an efficient way to compute molecular surfaces. , 1996, Biopolymers.

[34]  J. Blanchard,et al.  Binding of Catalase-Peroxidase-Activated Isoniazid to Wild-Type and Mutant Mycobacterium tuberculosis Enoyl-ACP Reductases , 1996 .

[35]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[36]  J. Blanchard Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. , 1996, Annual review of biochemistry.

[37]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[38]  J. Marcinkeviciene,et al.  Purification and Characterization of the Mycobacterium smegmatis Catalase-Peroxidase Involved in Isoniazid Activation (*) , 1995, The Journal of Biological Chemistry.

[39]  Feliu Maseras,et al.  IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states , 1995, J. Comput. Chem..

[40]  J C Sacchettini,et al.  Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. , 1995, Biochemistry.

[41]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[42]  J. Sacchettini,et al.  Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis , 1995, Science.

[43]  P. Schultz,et al.  Mechanistic Studies of the Oxidation of Isoniazid by the Catalase Peroxidase from Mycobacterium tuberculosis , 1994 .

[44]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[45]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[46]  Robert W. Harrison,et al.  Stiffness and energy conservation in molecular dynamics: An improved integrator , 1993, J. Comput. Chem..

[47]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[48]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[49]  S. Cole,et al.  The catalase—peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis , 1992, Nature.

[50]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[51]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[52]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[53]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[54]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .