Block recursive LU preconditioners for the thermally coupled incompressible inductionless MHD problem
暂无分享,去创建一个
[1] L. Bühler,et al. Liquid Metal Magnetohydrodynamics for Fusion Blankets , 2007 .
[2] Santiago Badia,et al. Finite element approximation of nematic liquid crystal flows using a saddle-point structure , 2011, J. Comput. Phys..
[3] George S. Dulikravich,et al. Magnetofluiddynamics in Channels and Containers , 2001 .
[4] Santiago Badia,et al. Approximation of the inductionless MHD problem using a stabilized finite element method , 2011, J. Comput. Phys..
[5] A. Chorin. A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .
[6] A. Chorin. Numerical Solution of the Navier-Stokes Equations* , 1989 .
[7] Santiago Badia,et al. On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics , 2013, J. Comput. Phys..
[8] S. Badia. On stabilized finite element methods based on the Scott-Zhang projector: circumventing the inf-sup condition for the Stokes problem , 2012 .
[9] J. A. Shercliff. Steady motion of conducting fluids in pipes under transverse magnetic fields , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.
[10] John N. Shadid,et al. A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..
[11] Vipin Kumar,et al. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..
[12] T. Hughes. Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .
[13] CLARK R. DOHRMANN,et al. A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..
[14] Ramakanth Munipalli,et al. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On an arbitrary collocated mesh , 2007, J. Comput. Phys..
[15] J. Cahouet,et al. Some fast 3D finite element solvers for the generalized Stokes problem , 1988 .
[16] 강문설. [서평]「The Unified Modeling Language User Guide」 , 1999 .
[17] R. Temam. Sur la stabilité et la convergence de la méthode des pas fractionnaires , 1968 .
[18] Roland Becker,et al. A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .
[19] John N. Shadid,et al. Stabilization and scalable block preconditioning for the Navier-Stokes equations , 2012, J. Comput. Phys..
[20] Toshio Tagawa,et al. Buoyant flow in long vertical enclosures in the presence of a strong horizontal magnetic field. Part 2. Finite enclosures , 2003 .
[21] John N. Shadid,et al. A New Approximate Block Factorization Preconditioner for Two-Dimensional Incompressible (Reduced) Resistive MHD , 2013, SIAM J. Sci. Comput..
[22] Santiago Badia,et al. Enhanced balancing Neumann–Neumann preconditioning in computational fluid and solid mechanics , 2013 .
[23] Ivar Jacobson,et al. Unified Modeling Language User Guide, The (2nd Edition) (Addison-Wesley Object Technology Series) , 2005 .
[24] R. Codina. Stabilized finite element approximation of transient incompressible flows using orthogonal subscales , 2002 .
[25] C. Mistrangelo. Magnetohydrodynamic flow in a mock-up of a HCLL blanket. Part I: Numerical analysis , 2008 .
[26] J. C. R. Hunt,et al. Magnetohydrodynamic flow in rectangular ducts , 1965, Journal of Fluid Mechanics.
[27] AKIN. Object-oriented programming via Fortran 90/95 , 2003 .
[28] S. Horanyi,et al. Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Wissenschaftliche Berichte FZKA 7424 Magnetohydrodynamic Flow in a Mock-Up of a HCLL Blanket Part II Experiments , 2008 .
[29] Howard C. Elman,et al. Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .
[30] Damian Rouson,et al. Scientific Software Design: The Object-Oriented Way , 2011 .
[31] Gunar Matthies,et al. A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .
[32] Paul Lin,et al. A parallel fully coupled algebraic multilevel preconditioner applied to multiphysics PDE applications: Drift‐diffusion, flow/transport/reaction, resistive MHD , 2010 .
[33] Barry Lee,et al. Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..
[34] T. Hughes,et al. The variational multiscale method—a paradigm for computational mechanics , 1998 .
[35] Juan Vicente Gutiérrez-Santacreu,et al. Unconditionally stable operator splitting algorithms for the incompressible magnetohydrodynamics system discretized by a stabilized finite element formulation based on projections , 2013 .
[36] Santiago Badia,et al. A Highly Scalable Parallel Implementation of Balancing Domain Decomposition by Constraints , 2014, SIAM J. Sci. Comput..
[37] Ramakanth Munipalli,et al. A current density conservative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On a rectangular collocated grid system , 2007, J. Comput. Phys..
[38] Santiago Badia,et al. Implementation and Scalability Analysis of Balancing Domain Decomposition Methods , 2013 .
[39] Paul T. Lin,et al. Towards a scalable fully-implicit fully-coupled resistive MHD formulation with stabilized FE methods , 2009, J. Comput. Phys..
[40] R. Codina. Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods , 2000 .