Evaluating the quality of NMR structures by local density of protons

Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high‐resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z‐scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z‐scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711–1733) generated by all atom contact analysis. Local density Z‐scores for NMR structures exhibit a significantly wider range of values than for X‐ray structures and demonstrate a combination of potentially problematic inflation and compression. Water‐refined NMR structures show improved packing quality. Our analysis of a high‐quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures. Proteins 2006. © 2005 Wiley‐Liss, Inc.

[1]  M. Nilges,et al.  Influence of non-bonded parameters on the quality of NMR structures: A new force field for NMR structure calculation , 1999, Journal of biomolecular NMR.

[2]  Ian W. Davis,et al.  Structure validation by Cα geometry: ϕ,ψ and Cβ deviation , 2003, Proteins.

[3]  Nico Tjandra,et al.  Residual dipolar couplings in NMR structure analysis. , 2004, Annual review of biophysics and biomolecular structure.

[4]  Gert Vriend,et al.  Quantitative evaluation of experimental NMR restraints. , 2003, Journal of the American Chemical Society.

[5]  Herbert Edelsbrunner,et al.  Interface surfaces for protein-protein complexes , 2004, JACM.

[6]  M. Nilges,et al.  Refinement of protein structures in explicit solvent , 2003, Proteins.

[7]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[8]  Gaetano T Montelione,et al.  Clustering algorithms for identifying core atom sets and for assessing the precision of protein structure ensembles , 2005, Proteins.

[9]  C. Sander,et al.  Errors in protein structures , 1996, Nature.

[10]  David C. Richardson,et al.  MOLPROBITY: structure validation and all-atom contact analysis for nucleic acids and their complexes , 2004, Nucleic Acids Res..

[11]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[12]  R Powers,et al.  Validity of using the radius of gyration as a restraint in NMR protein structure determination. , 2001, Journal of the American Chemical Society.

[13]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[14]  C. Chothia,et al.  The Packing Density in Proteins: Standard Radii and Volumes , 1999 .

[15]  Bin Xia,et al.  Comparison of protein solution structures refined by molecular dynamics simulation in vacuum, with a generalized Born model, and with explicit water , 2002, Journal of biomolecular NMR.

[16]  Yate-Ching Yuan,et al.  A novel DNA-binding motif shares structural homology to DNA replication and repair nucleases and polymerases , 1998, Nature Structural Biology.

[17]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[18]  R. Lipsitz,et al.  RESIDUAL DIPOLAR COUPLINGS IN NMR STRUCTURE ANALYSIS ⁄1 , 2004 .

[19]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[20]  Mark Gerstein,et al.  Calculations of protein volumes: sensitivity analysis and parameter database , 2002, Bioinform..

[21]  Thomas C. Hales Sphere packings, I , 1997, Discret. Comput. Geom..

[22]  D C Richardson,et al.  The kinemage: A tool for scientific communication , 1992, Protein science : a publication of the Protein Society.

[23]  A. Bax Weak alignment offers new NMR opportunities to study protein structure and dynamics , 2003, Protein science : a publication of the Protein Society.

[24]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[25]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[26]  G. Marius Clore,et al.  Improving the Packing and Accuracy of NMR Structures with a Pseudopotential for the Radius of Gyration , 1999 .

[27]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[28]  Ad Bax,et al.  Validation of Protein Structure from Anisotropic Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase , 1998 .

[29]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[30]  M. Zalis,et al.  Visualizing and quantifying molecular goodness-of-fit: small-probe contact dots with explicit hydrogen atoms. , 1999, Journal of molecular biology.

[31]  Robert Powers,et al.  Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics. , 2005, Journal of the American Chemical Society.

[32]  S. Wodak,et al.  Deviations from standard atomic volumes as a quality measure for protein crystal structures. , 1996, Journal of molecular biology.

[33]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[34]  M. Levitt,et al.  The volume of atoms on the protein surface: calculated from simulation, using Voronoi polyhedra. , 1995, Journal of molecular biology.

[35]  J. Prestegard,et al.  Residual dipolar couplings in structure determination of biomolecules. , 2004, Chemical reviews.

[36]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  T. Hales The Kepler conjecture , 1998, math/9811078.

[38]  Alexandre M J J Bonvin,et al.  DRESS: a database of REfined solution NMR structures , 2004, Proteins.

[39]  A M Gronenborn,et al.  New methods of structure refinement for macromolecular structure determination by NMR. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[40]  D. S. Garrett,et al.  R-factor, Free R, and Complete Cross-Validation for Dipolar Coupling Refinement of NMR Structures , 1999 .

[41]  Thomas C. Hales Sphere Packings, II , 1997, Discret. Comput. Geom..

[42]  C. Chothia,et al.  The atomic structure of protein-protein recognition sites. , 1999, Journal of molecular biology.

[43]  M. DePristo,et al.  Simultaneous determination of protein structure and dynamics , 2005, Nature.

[44]  Michael Nilges,et al.  ARIA: automated NOE assignment and NMR structure calculation , 2003, Bioinform..

[45]  C. W. Hilbers,et al.  Improving the quality of protein structures derived by NMR spectroscopy** , 2002, Journal of biomolecular NMR.