Clusterwise functional linear regression models

[1]  Fang Yao,et al.  Partially functional linear regression in high dimensions , 2016 .

[2]  Ana-Maria Staicu,et al.  Classical testing in functional linear models , 2016, Journal of nonparametric statistics.

[3]  C. Müller,et al.  Simple consistent cluster methods based on redescending M-estimators with an application to edge identification in images , 2005 .

[4]  H. Wang,et al.  ROBUST SUBGROUP IDENTIFICATION , 2019, Statistica Sinica.

[5]  Gilbert Saporta,et al.  Clusterwise PLS regression on a stochastic process , 2002, Comput. Stat. Data Anal..

[6]  Huiwen Wang,et al.  The M-estimator for functional linear regression model , 2014 .

[7]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[8]  Hongtu Zhu,et al.  Quantile regression for functional partially linear model in ultra-high dimensions , 2019, Comput. Stat. Data Anal..

[9]  W. DeSarbo,et al.  A maximum likelihood methodology for clusterwise linear regression , 1988 .

[10]  L. Hubert,et al.  Comparing partitions , 1985 .

[11]  Xinyuan Song,et al.  Functional Sufficient Dimension Reduction for Functional Data Classification , 2018, J. Classif..

[12]  Joel L. Horowitz,et al.  Methodology and convergence rates for functional linear regression , 2007, 0708.0466.

[13]  Norbert Schuff,et al.  White matter damage in frontotemporal dementia and Alzheimer's disease measured by diffusion MRI , 2009, Brain : a journal of neurology.

[14]  R. Todd Ogden,et al.  Wavelet-based scalar-on-function finite mixture regression models , 2013, Comput. Stat. Data Anal..

[15]  D. Pollard A Central Limit Theorem for $k$-Means Clustering , 1982 .

[16]  Aurore Delaigle,et al.  Clustering functional data into groups by using projections , 2019, Journal of the Royal Statistical Society: Series B (Statistical Methodology).

[17]  Jian Huang,et al.  A Concave Pairwise Fusion Approach to Subgroup Analysis , 2015, 1508.07045.

[18]  C. Preda,et al.  PCR and PLS for Clusterwise Regression on Functional Data , 2007 .

[19]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[20]  J L Wang,et al.  Relationship of age patterns of fecundity to mortality, longevity, and lifetime reproduction in a large cohort of Mediterranean fruit fly females. , 1998, The journals of gerontology. Series A, Biological sciences and medical sciences.

[21]  Yuehua Wu,et al.  An M-Estimation-Based Procedure for Determining the Number of Regression Models in Regression Clustering , 2007, Adv. Decis. Sci..

[22]  A. Qu,et al.  Cluster analysis of longitudinal profiles with subgroups , 2018 .

[23]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[24]  Mei-Mei Zen,et al.  A strongly consistent information criterion for linear model selection based on M-estimation , 1999 .

[25]  Seokho Lee,et al.  An RKHS approach to robust functional linear regression , 2016 .

[26]  Yuejiao Fu,et al.  Functional mixture regression. , 2011, Biostatistics.

[27]  Christian Hennig,et al.  Identifiablity of Models for Clusterwise Linear Regression , 2000, J. Classif..

[28]  C. Jack,et al.  Effectiveness of regional DTI measures in distinguishing Alzheimer's disease, MCI, and normal aging☆ , 2013, NeuroImage: Clinical.

[29]  Qingguo Tang M-estimation for functional linear regression , 2017 .

[30]  Helmuth Späth,et al.  Algorithm 39 Clusterwise linear regression , 1979, Computing.

[31]  Xuming He,et al.  Bivariate Tensor-Product B-Splines in a Partly Linear Model , 1996 .

[32]  Linglong Kong,et al.  Partial functional linear quantile regression for neuroimaging data analysis , 2015, Neurocomputing.