An ELLAM Scheme for Advection-Diffusion Equations in Two Dimensions

We develop an Eulerian--Lagrangian localized adjoint method (ELLAM) to solve two-dimensional advection-diffusion equations with all combinations of inflow and outflow Dirichlet, Neumann, and flux boundary conditions. The ELLAM formalism provides a systematic framework for implementation of general boundary conditions, leading to mass-conservative numerical schemes. The computational advantages of the ELLAM approximation have been demonstrated for a number of one-dimensional transport systems; practical implementations of ELLAM schemes in multiple spatial dimensions that require careful algorithm development are discussed in detail in this paper. Extensive numerical results are presented to compare the ELLAM scheme with many widely used numerical methods and to demonstrate the strength of the ELLAM scheme.

[1]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[2]  R. K. Smith,et al.  Some upwinding techniques for finite element approximations of convection-diffusion equations , 1990 .

[3]  Richard E. Ewing,et al.  Eulerian‐Lagrangian localized adjoint method: The theoretical framework , 1993 .

[4]  Joannes J. Westerink,et al.  Consistent higher degree Petrov–Galerkin methods for the solution of the transient convection–diffusion equation , 1989 .

[5]  J. Whiteman The Mathematics of Finite Elements and Applications. , 1983 .

[6]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[7]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[8]  Richard E. Ewing,et al.  Eulerian–Lagrangian localized adjoint methods for reactive transport with biodegradation , 1995 .

[9]  T. F. Russell,et al.  NUMERICAL METHODS FOR CONVECTION-DOMINATED DIFFUSION PROBLEMS BASED ON COMBINING THE METHOD OF CHARACTERISTICS WITH FINITE ELEMENT OR FINITE DIFFERENCE PROCEDURES* , 1982 .

[10]  Claes Johnson,et al.  Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .

[11]  R. Ewing,et al.  Characteristics Petrov-Galerkin subdomain methods for two-phase immiscible flow , 1987 .

[12]  M. A. Celia,et al.  A Eulerian-Lagrangian localized adjoint method for reactive transport in groundwater. , 1990 .

[13]  P. Vittoz Man , 1962, Bloom.

[14]  T. F. Russell,et al.  Eulerian-Lagrangian localized adjoint methods for convection-diffusion equations and their convergence analysis , 1994 .

[15]  B. Vanleer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[16]  Philip John Binning,et al.  A Finite Volume Eulerian‐Lagrangian Localized Adjoint Method for Solution of the Contaminant Transport Equations in Two‐Dimensional Multiphase flow Systems , 1996 .

[17]  Kenneth Eriksson,et al.  Adaptive streamline diffusion finite element methods for stationary convection-diffusion problems , 1993 .

[18]  D. W. Pollock Semianalytical Computation of Path Lines for Finite‐Difference Models , 1988 .

[19]  Guohui Zhou An adaptive streamline diffusion finite element method for hyperbolic systems in gas dynamics , 1992 .

[20]  Mary F. Wheeler,et al.  An Operator-Splitting Method for Advection-Diffusion-Reaction Problems , 1987 .

[21]  R. Ewing,et al.  Characteristic adaptive subdomain methods for reservoir flow problems , 1990 .

[22]  G. Richter An Optimal-Order Error Estimate for the Discontinuous Galerkin Method , 1988 .

[23]  Leszek Demkowicz,et al.  An adaptive characteristic Petrov-Galerkin finite element method for convection-dominated linear and nonlinear parabolic problems in two space variables , 1986 .

[24]  O. Axelsson,et al.  Analytical and Numerical Approaches to Asymptotic Problems in Analysis. , 1983 .

[25]  Guohui Zhou,et al.  A local $L^2$-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems , 1995 .

[26]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[27]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[28]  Richard E. Ewing,et al.  EULERIAN-LAGRANGIAN LOCALIZED ADJOINT METHODS FOR VARIABLE-COEFFICIENT ADVECTIVE-DIFFUSIVE­ REACTIVE EQUATIONS IN GROUNDWATER CONTAMINANT TRANSPORT , 1994 .

[29]  W. Finn,et al.  Finite elements incorporating characteristics for one-dimensional diffusion-convection equation , 1980 .

[30]  Michael A. Celia,et al.  An improved cubic Petrov-Galerkin method for simulation of transient advection-diffusion processes in rectangularly decomposable domains , 1991 .

[31]  William G. Gray,et al.  Eulerian-Lagrangian localized adjoint methods with variable coefficients in multiple dimensions. , 1990 .

[32]  Hong Wang,et al.  Eulerian-Lagrangian localized adjoint methods for systems of nonlinear advective-diffusive-reactive transport equations , 1996 .

[33]  Richard W. Healy,et al.  Solution of the advection-dispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method , 1998 .

[34]  M. Wheeler,et al.  A characteristics-mixed finite element method for advection-dominated transport problems , 1995 .

[35]  Richard E. Ewing,et al.  Eulerian-Lagrangian Localized Adjoint Methods for a Nonlinear Advection-Diffusion Equation , 1994 .

[36]  Endre Süli,et al.  Stability of the Lagrange-Galerkin method with non-exact integration , 1988 .

[37]  K. Morgan,et al.  Recent advances in numerical methods in fluids , 1980 .

[38]  John W. Barrett,et al.  Approximate symmetrization and Petrov-Galerkin methods for diffusion-convection problems , 1984 .

[39]  Richard S. Falk,et al.  Local error estimates for a finite element method for hyperbolic and convection-diffusion equations , 1992 .

[40]  G. Pinder,et al.  A Numerical Technique for Calculating the Transient Position of the Saltwater Front , 1970 .

[41]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[42]  D. W. Peaceman,et al.  Numerical Calculation of Multidimensional Miscible Displacement by the Method of Characteristics , 1964 .

[43]  Peter Hansbo,et al.  On the convergence of shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws , 1990 .

[44]  John L. Wilson,et al.  Efficient and accurate front tracking for two‐dimensional groundwater flow models , 1991 .

[45]  T. F. Russell,et al.  An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation , 1990 .

[46]  F. T.,et al.  Simulation of Miscible Displacement Using Mixed Methods and a Modified Method of Characteristics , 2022 .

[47]  Richard W. Healy,et al.  A finite‐volume Eulerian‐Lagrangian Localized Adjoint Method for solution of the advection‐dispersion equation , 1993 .

[48]  S. P. Neuman,et al.  A Eulerian-Lagrangian numerical scheme for the dispersion-convection equation using conjugate space-time grids , 1981 .

[49]  Richard E. Ewing,et al.  Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis , 1993 .

[50]  O. Pironneau On the transport-diffusion algorithm and its applications to the Navier-Stokes equations , 1982 .

[51]  Richard E. Ewing,et al.  Optimal‐order convergence rates for Eulerian‐Lagrangian localized adjoint methods for reactive transport and contamination in groundwater , 1995 .

[52]  Daoqi Yang,et al.  A characteristic mixed method with dynamic finite-element space for convection-dominated diffusion problems , 1992 .

[53]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[54]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[55]  Richard E. Ewing,et al.  An optimal-order estimate for Eulerian-Lagrangian localized adjoint methods for variable-coefficient advection-reaction problems , 1996 .

[56]  Hong Wang,et al.  An ELLAM Scheme for Advection-Di usion Equations in Multi-Dimensions , 1996 .

[57]  O. C. Zienkiewicz,et al.  Finite element methods for second order differential equations with significant first derivatives , 1976 .

[58]  Hong Wang,et al.  Runge–Kutta characteristic methods for first‐order linear hyperbolic equations , 1997 .

[59]  Tracy Nishikawa,et al.  A New Total Variation Diminishing Scheme for the Solution of Advective‐Dominant Solute Transport , 1991 .

[60]  F. B. Ellerby,et al.  Numerical solutions of partial differential equations by the finite element method , by C. Johnson. Pp 278. £40 (hardback), £15 (paperback). 1988. ISBN 0-521-34514-6, 34758-0 (Cambridge University Press) , 1989, The Mathematical Gazette.

[61]  Michael A. Celia,et al.  Eulerian-Lagrangian Localized Adjoint Methods for Contaminant Transport Simulations , 1994 .

[62]  Peter Hansbo,et al.  The characteristic streamline diffusion method for the time-dependent incompressible Navier-Stokes equations , 1992 .

[63]  Juhani Pitkäranta,et al.  An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation , 1986 .

[64]  Antonio E. de M Baptista,et al.  Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backwards method of characteristics , 1987 .

[65]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[66]  C. Dawson Godunov-mixed methods for advective flow problems in one space dimension , 1991 .

[67]  Hong Wang,et al.  An Eulerian-Lagrangian Localized Adjoint Method withExponential-along-Characteristic Test Functions forVariable-Coe cient Advective-Di usive-Reactive Equations , 1995 .

[68]  Ning Lu,et al.  A SEMIANALYTICAL METHOD OF PATH LINE COMPUTATION FOR TRANSIENT FINITE-DIFFERENCE GROUNDWATER FLOW MODELS , 1994 .

[69]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[70]  T. Hughes,et al.  MULTI-DIMENSIONAL UPWIND SCHEME WITH NO CROSSWIND DIFFUSION. , 1979 .

[71]  Todd Arbogast,et al.  A Characteristic-Mixed Method for Contaminant Transport and Miscible Displacement , 1992 .

[72]  Ismael Herrera,et al.  A new numerical approach for the advective-diffusive transport equation , 1989 .

[73]  Gert Lube,et al.  Stabilized finite element methods for singularly perturbed parabolic problems , 1995 .