Simultaneous parsimony jackknife analysis of 2538rbcL DNA sequences reveals support for major clades of green plants, land plants, seed plants and flowering plants

The ever-larger data matrices resulting from continuing improvements in DNA sequencing techniques require faster and more efficient methods of phylogenetic analysis. Here we explore a promising new method, parsimony jackknifing, by analyzing a matrix comprising 2538 sequences of the chloroplast generbcL. The sequences included cover a broad taxonomic range, from cyanobacteria to flowering plants. Several parsimony jackknife analyses were performed, both with and without branch-swapping and multiple random addition sequences: 1) including all positions; 2) including only first and second codon positions; 3) including only third positions; and 4) using only transversions. The best resolution was obtained using all positions. Removal of third positions or transitions led to massive loss of resolution, although using only transversions somewhat improved basal resolution. While branch-swapping improved both resolution and the support found for several groups, most of the groups could be recovered by faster simple analyses. Designed to eliminate groups poorly supported by the data, parsimony jackknifing recognizes 1400 groups on the basis of allrbcL positions. These include major taxa such as green plants, land plants, flowering plants, monocots and eudicots. We include appendices of supported angiosperm families, as well as larger groups.

[1]  A. Cronquist Angiosperm Orders and Families. (Book Reviews: An Integrated System of Classification of Flowering Plants) , 1982 .

[2]  C. Jeffrey Kingdoms, Codes and Classification , 1982 .

[3]  The Monocotyledons: A Comparative Study. , 1983 .

[4]  K. R. Mattox Classification of the green algae: a concept based on comparative cytology , 1984 .

[5]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[6]  Prof. Dr. Rolf M. T. Dahlgren,et al.  The Families of the Monocotyledons , 1985, Springer Berlin Heidelberg.

[7]  K. Bremer SUMMARY OF GREEN PLANT PHYLOGENY AND CLASSIFICATION , 1985, Cladistics : the international journal of the Willi Hennig Society.

[8]  M. Clegg,et al.  Evolutionary Analysis of Plant DNA Sequences , 1987, The American Naturalist.

[9]  G. Zurawski Evolution of Higher-Plant Chloroplast DNA-Encoded Genes: Implications for Structure-Function and Phylogenetic Studies , 1987 .

[10]  K. Bremer THE LIMITS OF AMINO ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION , 1988, Evolution; international journal of organic evolution.

[11]  Michael J Sanderson,et al.  CONFIDENCE LIMITS ON PHYLOGENIES: THE BOOTSTRAP REVISITED , 1989, Cladistics : the international journal of the Willi Hennig Society.

[12]  M. Clegg,et al.  Chloroplast DNA sequence from a Miocene Magnolia species , 1990, Nature.

[13]  M. Chase,et al.  Carnivorous plants: phylogeny and structural evolution. , 1992, Science.

[14]  C. Bult,et al.  SKEWNESS AND PERMUTATION , 1992, Cladistics : the international journal of the Willi Hennig Society.

[15]  C. R. Parks,et al.  Molecular Phylogenetics of the Magnoliidae: Cladistic Analyses of Nucleotide Sequences of the Plastid Gene rbcL , 1993 .

[16]  James F. Smith Phylogenetic Hypotheses for the Monocotyledons Constructed from rbc L Sequence Data , 1993 .

[17]  W. Kress,et al.  Phylogenetic analysis of the Zingiberales based on rbcL sequences. , 1993 .

[18]  M. Chase,et al.  Systematics of the Ericaceae, Empetraceae, Epacridaceae and Related Taxa Based Upon rbcL Sequence Data , 1993 .

[19]  J. Palmer,et al.  Nucleotide sequences of the rbcL gene indicate monophyly of mustard oil plants , 1993 .

[20]  P. Gadek,et al.  Rosid affinities of Surianaceae: molecular evidence. , 1993, Molecular phylogenetics and evolution.

[21]  D. Soltis,et al.  Phylogenetic relationships among members of Saxifragaceae sensu lato based on rbcL sequence data , 1993 .

[22]  James F. Smith Phylogenetics of seed plants : An analysis of nucleotide sequences from the plastid gene rbcL , 1993 .

[23]  J. Palmer,et al.  Phylogenetic relationships of the Geraniaceae and Geraniales from rbcL sequence comparisons , 1993 .

[24]  J. Palmer,et al.  A parsimony analysis of the Asteridae sensu lato based on rbcL sequences. , 1993 .

[25]  René J. Jorna,et al.  Addresses of the authors , 1993 .

[26]  Kevin C. Nixon,et al.  A Reevaluation of Seed Plant Phylogeny , 1994 .

[27]  D. Soltis,et al.  Systematic and evolutionary implications of rbcL sequence variation in Rosaceae , 1994 .

[28]  K. Bremer,et al.  BRANCH SUPPORT AND TREE STABILITY , 1994 .

[29]  K. Nixon,et al.  Functional Constraints and rbcL Evidence for Land Plant Phylogeny , 1994 .

[30]  J. Manhart Phylogenetic analysis of green plant rbcL sequences. , 1994, Molecular Phylogenetics and Evolution.

[31]  C. Delwiche,et al.  Phylogenetic Relationships of the "Green Algae" and "Bryophytes" , 1994 .

[32]  M. Donoghue,et al.  Integration of morphological and ribosomal RNA data on the origin of angiosperms , 1994 .

[33]  Dennis W. Stevenson,et al.  Monocot systematics: a combined analysis , 1995 .

[34]  P. Wolf Hierarchical Analysis of Allozymic and Morphometric Variation in a Montane Herb, Ipomopsis aggregata (Polemoniaceae) , 1995 .

[35]  P. Gadek,et al.  Simaroubaceae, an artificial construct: evidence from rbcL sequence variation , 1995 .

[36]  M. Hasebe,et al.  Fern phylogeny based on rbcL nucleotide sequences , 1995 .

[37]  R. Olmstead,et al.  Evidence for the polyphyly of the Scrophulariaceae based on Chloroplast rbcL and ndhF sequences , 1995 .

[38]  M. Chase,et al.  New Circumscriptions and a New Family of Asparagoid Lilies: Genera Formerly included in Anthericaceae , 1996 .

[39]  J. Farris,et al.  PARSIMONY JACKKNIFING OUTPERFORMS NEIGHBOR‐JOINING , 1996, Cladistics : the international journal of the Willi Hennig Society.

[40]  Takenobu Tokunaga,et al.  Integration of Morphological and Syntactic Analysis Based on GLR Parsing , 1996 .

[41]  M. Chase,et al.  A molecular evaluation of the monophyly of the order Ebenales based upon rbcL sequence data , 1996 .

[42]  M. Chase,et al.  Systematics of Xanthorrhoeaceae sensu lato: evidence for polyphyly , 1996 .

[43]  D. Soltis,et al.  Higher level relationships of Apiales (Apiaceae and Araliaceae) based on phylogenetic analysis of rbcL sequences , 1996 .

[44]  E. Conti,et al.  Circumscription of Myrtales and their relationships to other rosids: evidence from rbcL sequence data , 1996 .

[45]  M. Chase,et al.  A phylogenetic analysis of Zygophyllaceae R.Br. based on morphological, anatomical and rbcL DNA sequence data , 1996 .

[46]  K. Bremer,et al.  The circumscription and systematic position of Carpodetaceae , 1997 .

[47]  V. Savolainen,et al.  Polyphyletism of Celastrales deduced from a chloroplast noncoding DNA region. , 1997, Molecular phylogenetics and evolution.

[48]  M. Chase,et al.  Taxonomic Affinities of Medusagyne oppositifolia (Medusagynaceae) , 1997 .

[49]  K. Karol,et al.  Phylogenetic relationships of Lecythidaceae: a cladistic analysis using rbcL sequence and morphological data. , 1997, American journal of botany.

[50]  M. Donoghue,et al.  Analyzing large data sets: rbcL 500 revisited. , 1997, Systematic biology.

[51]  M. Chase,et al.  Muntingiaceae , a new family of dicotyledons with malvalean affinities , 1998 .

[52]  D Baum,et al.  Circumscription of the Malvales and relationships to other Rosidae: evidence from rbcL sequence data. , 1998, American journal of botany.

[53]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[54]  B. Bremer,et al.  Phylogeny of theAsteridae s. str. based onrbcL sequences, with particular reference to theDipsacales , 1997, Plant Systematics and Evolution.

[55]  B. Bremer,et al.  Phylogeny of theAsterales sensu lato based onrbcL sequences with particular reference to theGoodeniaceae , 1996, Plant Systematics and Evolution.

[56]  M. Källersjö,et al.  Phylogenetic relationships in thePrimulales inferred fromrbcL sequence data , 1998, Plant Systematics and Evolution.

[57]  A. Backlund Phylogeny of the Asteridae s . str . based on rbcL sequences , with particular reference to the Dipsacales , 2022 .