MCMC exploration of supermassive black hole binary inspirals

The Laser Interferometer Space Antenna will be able to detect the inspiral and merger of super massive black hole binaries (SMBHBs) anywhere in the universe. Standard matched filtering techniques can be used to detect and characterize these systems. Markov Chain Monte Carlo (MCMC) methods are ideally suited to this and other LISA data analysis problems as they are able to efficiently handle models with large dimensions. Here we compare the posterior parameter distributions derived by an MCMC algorithm with the distributions predicted by the Fisher information matrix. We find excellent agreement for the extrinsic parameters, while the Fisher matrix slightly overestimates errors in the intrinsic parameters.

[1]  A. Vecchio,et al.  A Markov chain Monte Carlo approach to the study of massive black hole binary systems with LISA , 2006 .

[2]  N. Cornish,et al.  LISA data analysis using genetic algorithms , 2006, gr-qc/0601036.

[3]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[4]  S. Mohanty,et al.  Tomographic approach to resolving the distribution of LISA Galactic binaries , 2005, gr-qc/0512014.

[5]  N. Cornish,et al.  LISA data analysis using Markov chain Monte Carlo methods , 2005 .

[6]  N. Christensen,et al.  Bayesian modeling of source confusion in LISA data , 2005, gr-qc/0506055.

[7]  N. Christensen,et al.  Detecting Gravitational Radiation from Neutron Stars using a Six‐Parameter Adaptive MCMC Method , 2004, gr-qc/0404025.

[8]  N. Christensen,et al.  Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data , 2004, gr-qc/0402038.

[9]  A. Libson,et al.  A Metropolis–Hastings routine for estimating parameters from compact binary inspiral events with laser interferometric gravitational radiation data , 2004 .

[10]  N. Cornish,et al.  LISA Data Analysis: Source Identification and Subtraction , 2003, astro-ph/0301548.

[11]  N. Seto Effects of finite armlength of LISA on analysis of gravitational waves from massive-black-hole binaries , 2002, gr-qc/0210028.

[12]  N. Cornish,et al.  The LISA response function , 2002, gr-qc/0209011.

[13]  S. Hughes Untangling the merger history of massive black holes with LISA , 2001, astro-ph/0108483.

[14]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.

[15]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[16]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.