General Yield Conditions in a Plasticity Analysis of Soil-Wheel Interaction

Abstract Plasticity theory and a general representation of the Mohr failure criterion are applied to the problem of soil-wheel interaction. Load, drawbar pull (or drag), and torque are computed for a rigid wheel being driven on Jones Beach sand. Analytical results obtained from solutions using a conventional Mohr-Coulomb linear failure envelope are compared to those obtained from a non-linear solution. Conclusions are drawn from the comparison that attest the importance of considering the nonlinearity of failure envelopes in certain cases for accuracy of soil-wheel interaction prediction. Preliminary experimental results show reasonable agreement with predicted values of wheel performance parameters.