Diagenesis, not biogenesis: Two late Roman skeletal examples.

[1]  J. S. Morris,et al.  The effects of dry ashing on the composition of human and animal bone , 1990, Biological Trace Element Research.

[2]  D. Rowell,et al.  The role of gypsum in the reactions of phosphate with soils , 2006 .

[3]  L. Ma,et al.  Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. , 2006, The Science of the total environment.

[4]  D. Kaplan,et al.  Phosphate sources and their suitability for remediation of contaminated soils. , 2006, The Science of the total environment.

[5]  Yakov Kuzyakov,et al.  Carbonate re-crystallization in soil revealed by 14C labeling: Experiment, model and significance for paleo-environmental reconstructions , 2006 .

[6]  Yakov Kuzyakov,et al.  Sources of CO2 efflux from soil and review of partitioning methods , 2006 .

[7]  Nuria Vergara,et al.  Response to the letter to the editor by Andrew Millard , 2006 .

[8]  A. Millard Comment on Martínez-García et al. "Heavy metals in human bones in different historical epochs". , 2006, The Science of the total environment.

[9]  M. Porti,et al.  Heavy metals in human bones in different historical epochs. , 2005, The Science of the total environment.

[10]  J. Zapata Restos óseos de necrópolis tardorromanas del Puerto de Mazarrón, Murcia , 2004 .

[11]  M. Collins,et al.  Characterisation of microbial attack on archaeological bone. , 2004 .

[12]  E. González‐Reimers,et al.  Bone cadmium and lead in prehistoric inhabitants and domestic animals from Gran Canaria. , 2003, The Science of the total environment.

[13]  L. Ma,et al.  Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. , 2002, Environmental science & technology.

[14]  M.M.E. Jans,et al.  In situ preservation of archaeological bone: a histological study within a multidisciplinary approach , 2002 .

[15]  Robert E. M. Hedges,et al.  Bone diagenesis: an overview of processes , 2002 .

[16]  C. Denys Taphonomy and experimentation , 2002 .

[17]  A. Pollard,et al.  Here today, gone tomorrow? integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. , 2002, Accounts of chemical research.

[18]  A. Pike,et al.  Diagenetic arsenic uptake in archaeological bone. Can we really identify copper smelters , 2002 .

[19]  I. Lauder,et al.  An estimation of the post-mortem interval in human skeletal remains: a radionuclide and trace element approach. , 2001, Forensic science international.

[20]  Christina M. Nielsen-Marsh,et al.  Patterns of Diagenesis in Bone I: The Effects of Site Environments , 2000 .

[21]  C. Pérez-Sirvent,et al.  ENVIRONMENTAL TRANSFER OF ZINC IN CALCAREOUS SOILS IN ZONES NEAR OLD MINING SITES WITH SEMI-ARIDIC CLIMATE. , 1999 .

[22]  S. Raber The dense metaphyseal band sign. , 1999, Radiology.

[23]  H. M. Selim,et al.  Fate and Transport of Heavy Metals in the Vadose Zone , 1999 .

[24]  Michel Mench,et al.  Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation , 1999 .

[25]  T. Minami,et al.  In- and out-flows of elements in bones embedded in reference soils. , 1998, Forensic science international.

[26]  S. Jones,et al.  The speed of post mortem change to the human skeleton and its taphonomic significance. , 1996, Forensic science international.

[27]  R. Nicholson Bone degradation, burial medium and species representation : Debunking the myths, an experiment-based approach , 1996 .

[28]  R. Hedges,et al.  A diffusion-adsorption model of uranium uptake by archaeological bone , 1996 .

[29]  U. Tapper,et al.  Trace and heavy metal analyses of a skeletal population representing the town people in Turku (Abo), Finland in the 16th-17th centuries: with special reference to gender, age and social background. , 1996, The Science of the total environment.

[30]  Q. Ma,et al.  Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. , 1995, Environmental science & technology.

[31]  I. Baranowska,et al.  The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the upper Silesian industrial district. , 1995, The Science of the total environment.

[32]  Concepción de la Rúa Vaca,et al.  Estudio antropológico de la población de Pico Ramos (Muskiz, Bizkaia): Consideraciones sobre la demografía, salud y subsistencia , 1995 .

[33]  J. Ezzo Putting the "Chemistry" Back into Archaeological Bone Chemistry Analysis: Modeling Potential Paleodietary Indicators , 1994 .

[34]  M. A. Sánchez Aspectos económicos del sureste hispano en época romana : Mazarrón y su puerto / Manuel Amante Sánchez ; director Antonino González Blanco. , 1994 .

[35]  J. Schwartz,et al.  Skeletal Biology of Past Peoples: Research Methods , 1994 .

[36]  G. Grupe,et al.  Prehistoric Human Bone , 1993 .

[37]  P. Francalacci,et al.  Reproducibility and Reliability of Trace Element Analysis in an Italian Medieval Necropolis , 1993 .

[38]  R. Castillo,et al.  Explotaciones mineras e impacto ambiental en el sector de Mazarrón (Murcia) , 1993 .

[39]  C. D. González,et al.  Dinámica y evolución del litoral de el puerto de Mazarrón (Murcia) , 1993 .

[40]  M. Sirvent,et al.  Aspectos minero-metalúrgicos del horno romano de fundición de La Loma de las Herrerías (Mazarrón, Murcia) , 1993 .

[41]  M. K. Sandford Investigations of ancient human tissue : chemical analyses in anthropology , 1993 .

[42]  G. Grupe,et al.  Prehistoric human bone : archaeology at the molecular level , 1993 .

[43]  K. Reinhard,et al.  Evaluation of lead concentrations in 18th-century Omaha Indian skeletons using ICP-MS. , 1992, American journal of physical anthropology.

[44]  R. Legeros,et al.  Solubility profiles of synthetic apatites and of modern and fossil bones , 1991 .

[45]  Elena Ruiz Valderas Núcleo urbano y necrópolis de la calle Era, en el Puerto de Mazarrón , 1991 .

[46]  Linda L. Klepingera Magnesium ingestion and bone magnesium concentration in paleodietary reconstruction: cautionary evidence from an animal model , 1990 .

[47]  T. Price,et al.  The Chemistry of Prehistoric Human Bone , 1990 .

[48]  K. Pritzker,et al.  THE ABUSE OF BONE ANALYSES FOR ARCHAEOLOGICAL DIETARY STUDIES , 1989 .

[49]  G. Grupe,et al.  Impact of microbial activity on trace element concentrations in excavated bones , 1989 .

[50]  B. Herrmann,et al.  Trace Elements in Environmental History , 1988, Proceedings in Life Sciences.

[51]  G. Grupe Impact of the choice of bone samples on trace element data in excavated human skeletons , 1988 .

[52]  G. Grupe,et al.  Trace Element Contaminations in Excavated Bones by Microorganisms , 1988 .

[53]  M. Grynpas,et al.  Are archaeological bones similar to modern bones? An INAA assessment , 1987 .

[54]  J. H. Kyle Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth—the implications for palaeodietary research , 1986 .

[55]  C. B. Szpunar,et al.  Bone diagenesis and dietary analysis , 1985 .

[56]  T. Price,et al.  Late Archaic Subsistence in the Midwestern United States , 1985 .

[57]  D. V. Endt,et al.  Experimental Effects of Bone Size and Temperature On Bone Diagenesis , 1984 .

[58]  M. Schoeninger Diet and the evolution of modern human form in the Middle East. , 1982, American journal of physical anthropology.

[59]  A. Sillen,et al.  Strontium and paleodietary research: A review , 1982 .

[60]  A. Sillen,et al.  Strontium and Palodietary Research: a Review , 1982 .

[61]  C. B. Szpunar,et al.  Analysis of excavated bone by atomic absorption , 1978 .

[62]  E. A. Park,et al.  THE IMPRINTING OF NUTRITIONAL DISTURBANCES ON THE GROWING BONE. , 1964, Pediatrics.