Diagenesis, not biogenesis: Two late Roman skeletal examples.
暂无分享,去创建一个
[1] J. S. Morris,et al. The effects of dry ashing on the composition of human and animal bone , 1990, Biological Trace Element Research.
[2] D. Rowell,et al. The role of gypsum in the reactions of phosphate with soils , 2006 .
[3] L. Ma,et al. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata. , 2006, The Science of the total environment.
[4] D. Kaplan,et al. Phosphate sources and their suitability for remediation of contaminated soils. , 2006, The Science of the total environment.
[5] Yakov Kuzyakov,et al. Carbonate re-crystallization in soil revealed by 14C labeling: Experiment, model and significance for paleo-environmental reconstructions , 2006 .
[6] Yakov Kuzyakov,et al. Sources of CO2 efflux from soil and review of partitioning methods , 2006 .
[7] Nuria Vergara,et al. Response to the letter to the editor by Andrew Millard , 2006 .
[8] A. Millard. Comment on Martínez-García et al. "Heavy metals in human bones in different historical epochs". , 2006, The Science of the total environment.
[9] M. Porti,et al. Heavy metals in human bones in different historical epochs. , 2005, The Science of the total environment.
[10] J. Zapata. Restos óseos de necrópolis tardorromanas del Puerto de Mazarrón, Murcia , 2004 .
[11] M. Collins,et al. Characterisation of microbial attack on archaeological bone. , 2004 .
[12] E. González‐Reimers,et al. Bone cadmium and lead in prehistoric inhabitants and domestic animals from Gran Canaria. , 2003, The Science of the total environment.
[13] L. Ma,et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. , 2002, Environmental science & technology.
[14] M.M.E. Jans,et al. In situ preservation of archaeological bone: a histological study within a multidisciplinary approach , 2002 .
[15] Robert E. M. Hedges,et al. Bone diagenesis: an overview of processes , 2002 .
[16] C. Denys. Taphonomy and experimentation , 2002 .
[17] A. Pollard,et al. Here today, gone tomorrow? integrated experimentation and geochemical modeling in studies of archaeological diagenetic change. , 2002, Accounts of chemical research.
[18] A. Pike,et al. Diagenetic arsenic uptake in archaeological bone. Can we really identify copper smelters , 2002 .
[19] I. Lauder,et al. An estimation of the post-mortem interval in human skeletal remains: a radionuclide and trace element approach. , 2001, Forensic science international.
[20] Christina M. Nielsen-Marsh,et al. Patterns of Diagenesis in Bone I: The Effects of Site Environments , 2000 .
[21] C. Pérez-Sirvent,et al. ENVIRONMENTAL TRANSFER OF ZINC IN CALCAREOUS SOILS IN ZONES NEAR OLD MINING SITES WITH SEMI-ARIDIC CLIMATE. , 1999 .
[22] S. Raber. The dense metaphyseal band sign. , 1999, Radiology.
[23] H. M. Selim,et al. Fate and Transport of Heavy Metals in the Vadose Zone , 1999 .
[24] Michel Mench,et al. Evaluation of hydroxyapatite as a metal immobilizing soil additive for the remediation of polluted soils. Part 1. Influence of hydroxyapatite on metal exchangeability in soil, plant growth and plant metal accumulation , 1999 .
[25] T. Minami,et al. In- and out-flows of elements in bones embedded in reference soils. , 1998, Forensic science international.
[26] S. Jones,et al. The speed of post mortem change to the human skeleton and its taphonomic significance. , 1996, Forensic science international.
[27] R. Nicholson. Bone degradation, burial medium and species representation : Debunking the myths, an experiment-based approach , 1996 .
[28] R. Hedges,et al. A diffusion-adsorption model of uranium uptake by archaeological bone , 1996 .
[29] U. Tapper,et al. Trace and heavy metal analyses of a skeletal population representing the town people in Turku (Abo), Finland in the 16th-17th centuries: with special reference to gender, age and social background. , 1996, The Science of the total environment.
[30] Q. Ma,et al. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. , 1995, Environmental science & technology.
[31] I. Baranowska,et al. The analysis of lead, cadmium, zinc, copper and nickel content in human bones from the upper Silesian industrial district. , 1995, The Science of the total environment.
[32] Concepción de la Rúa Vaca,et al. Estudio antropológico de la población de Pico Ramos (Muskiz, Bizkaia): Consideraciones sobre la demografía, salud y subsistencia , 1995 .
[33] J. Ezzo. Putting the "Chemistry" Back into Archaeological Bone Chemistry Analysis: Modeling Potential Paleodietary Indicators , 1994 .
[34] M. A. Sánchez. Aspectos económicos del sureste hispano en época romana : Mazarrón y su puerto / Manuel Amante Sánchez ; director Antonino González Blanco. , 1994 .
[35] J. Schwartz,et al. Skeletal Biology of Past Peoples: Research Methods , 1994 .
[36] G. Grupe,et al. Prehistoric Human Bone , 1993 .
[37] P. Francalacci,et al. Reproducibility and Reliability of Trace Element Analysis in an Italian Medieval Necropolis , 1993 .
[38] R. Castillo,et al. Explotaciones mineras e impacto ambiental en el sector de Mazarrón (Murcia) , 1993 .
[39] C. D. González,et al. Dinámica y evolución del litoral de el puerto de Mazarrón (Murcia) , 1993 .
[40] M. Sirvent,et al. Aspectos minero-metalúrgicos del horno romano de fundición de La Loma de las Herrerías (Mazarrón, Murcia) , 1993 .
[41] M. K. Sandford. Investigations of ancient human tissue : chemical analyses in anthropology , 1993 .
[42] G. Grupe,et al. Prehistoric human bone : archaeology at the molecular level , 1993 .
[43] K. Reinhard,et al. Evaluation of lead concentrations in 18th-century Omaha Indian skeletons using ICP-MS. , 1992, American journal of physical anthropology.
[44] R. Legeros,et al. Solubility profiles of synthetic apatites and of modern and fossil bones , 1991 .
[45] Elena Ruiz Valderas. Núcleo urbano y necrópolis de la calle Era, en el Puerto de Mazarrón , 1991 .
[46] Linda L. Klepingera. Magnesium ingestion and bone magnesium concentration in paleodietary reconstruction: cautionary evidence from an animal model , 1990 .
[47] T. Price,et al. The Chemistry of Prehistoric Human Bone , 1990 .
[48] K. Pritzker,et al. THE ABUSE OF BONE ANALYSES FOR ARCHAEOLOGICAL DIETARY STUDIES , 1989 .
[49] G. Grupe,et al. Impact of microbial activity on trace element concentrations in excavated bones , 1989 .
[50] B. Herrmann,et al. Trace Elements in Environmental History , 1988, Proceedings in Life Sciences.
[51] G. Grupe. Impact of the choice of bone samples on trace element data in excavated human skeletons , 1988 .
[52] G. Grupe,et al. Trace Element Contaminations in Excavated Bones by Microorganisms , 1988 .
[53] M. Grynpas,et al. Are archaeological bones similar to modern bones? An INAA assessment , 1987 .
[54] J. H. Kyle. Effect of post-burial contamination on the concentrations of major and minor elements in human bones and teeth—the implications for palaeodietary research , 1986 .
[55] C. B. Szpunar,et al. Bone diagenesis and dietary analysis , 1985 .
[56] T. Price,et al. Late Archaic Subsistence in the Midwestern United States , 1985 .
[57] D. V. Endt,et al. Experimental Effects of Bone Size and Temperature On Bone Diagenesis , 1984 .
[58] M. Schoeninger. Diet and the evolution of modern human form in the Middle East. , 1982, American journal of physical anthropology.
[59] A. Sillen,et al. Strontium and paleodietary research: A review , 1982 .
[60] A. Sillen,et al. Strontium and Palodietary Research: a Review , 1982 .
[61] C. B. Szpunar,et al. Analysis of excavated bone by atomic absorption , 1978 .
[62] E. A. Park,et al. THE IMPRINTING OF NUTRITIONAL DISTURBANCES ON THE GROWING BONE. , 1964, Pediatrics.