Transcription and recombination factories: common features?

[1]  A. Corcoran The epigenetic role of non-coding RNA transcription and nuclear organization in immunoglobulin repertoire generation. , 2010, Seminars in immunology.

[2]  A. Feeney Epigenetic regulation of V(D)J recombination. , 2010, Seminars in immunology.

[3]  Howard Cedar,et al.  Epigenetic control of recombination in the immune system. , 2010, Seminars in immunology.

[4]  D. Schatz,et al.  The In Vivo Pattern of Binding of RAG1 and RAG2 to Antigen Receptor Loci , 2010, Cell.

[5]  Peter Fraser,et al.  Organization of transcription. , 2010, Cold Spring Harbor perspectives in biology.

[6]  M. Krangel,et al.  Distinct contracted conformations of the Tcra/Tcrd locus during Tcra and Tcrd recombination , 2010, The Journal of experimental medicine.

[7]  David A. Orlando,et al.  Mediator and Cohesin Connect Gene Expression and Chromatin Architecture , 2010, Nature.

[8]  Yoshihiro Ohta,et al.  Active RNA Polymerases: Mobile or Immobile Molecular Machines? , 2010, PLoS biology.

[9]  Trey Ideker,et al.  A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates the B cell fate , 2010, Nature Immunology.

[10]  Suchit Jhunjhunwala,et al.  Chromatin Architecture and the Generation of Antigen Receptor Diversity , 2009, Cell.

[11]  P. Fraser,et al.  Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus , 2009, Nature.

[12]  C. Murre Faculty Opinions recommendation of Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. , 2009 .

[13]  Mathieu Blanchette,et al.  Chromatin conformation signatures of cellular differentiation , 2009, Genome Biology.

[14]  D. Heermann,et al.  Spatially confined folding of chromatin in the interphase nucleus , 2009, Proceedings of the National Academy of Sciences.

[15]  A. Feeney,et al.  Cutting Edge: Developmental Stage-Specific Recruitment of Cohesin to CTCF Sites throughout Immunoglobulin Loci during B Lymphocyte Development1 , 2009, The Journal of Immunology.

[16]  Ignacio A. Demarco,et al.  Regulation of B cell fate commitment and immunoglobulin heavy-chain gene rearrangements by Ikaros , 2008, Nature Immunology.

[17]  P. Cook,et al.  RNA polymerase II activity is located on the surface of protein-rich transcription factories , 2008, Journal of Cell Science.

[18]  Tobias A. Knoch,et al.  The 3D Structure of the Immunoglobulin Heavy-Chain Locus: Implications for Long-Range Genomic Interactions , 2008, Cell.

[19]  Stephan Sauer,et al.  Cohesins Functionally Associate with CTCF on Mammalian Chromosome Arms , 2008, Cell.

[20]  Chiara Lanzuolo,et al.  Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex , 2007, Nature Cell Biology.

[21]  K. Rajewsky,et al.  Yin Yang 1 is a critical regulator of B-cell development. , 2007, Genes & development.

[22]  Dieter W Heermann,et al.  Random loop model for long polymers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  T. Kohwi-Shigematsu,et al.  SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes , 2006, Nature Genetics.

[24]  Roy Riblet,et al.  Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. , 2005, Genes & development.

[25]  P. Fraser,et al.  Antisense intergenic transcription in V(D)J recombination , 2004, Nature Immunology.

[26]  M. Busslinger,et al.  Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. , 2004, Genes & development.

[27]  D. Jackson,et al.  Regional specialization in human nuclei: visualization of discrete sites of transcription by RNA polymerase III , 1999, The EMBO journal.

[28]  D. Jackson,et al.  Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. , 1996, Journal of cell science.

[29]  B. Trask,et al.  Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus , 1995, The Journal of cell biology.

[30]  G van den Engh,et al.  A random-walk/giant-loop model for interphase chromosomes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. B. Rattner,et al.  Radial loops and helical coils coexist in metaphase chromosomes , 1985, Cell.

[32]  F. Alt,et al.  Developmentally controlled and tissue-specific expression of unrearranged VH gene segments , 1985, Cell.

[33]  D. Comings,et al.  Higher order structure of chromosomes , 1979, Chromosoma.

[34]  J. R. Paulson,et al.  The structure of histone-depleted metaphase chromosomes , 1977, Cell.

[35]  F. Alt,et al.  Pillars Article: Developmentally Controlled and Tissue-Specific Expression of Unrearranged VH Gene Segments. Cell. 1985. 40: 271–281 , 2012 .

[36]  Jennifer A. Mitchell,et al.  Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells , 2010, Nature Genetics.

[37]  I. Amit,et al.  Comprehensive mapping of long-range interactions reveals folding principles of the human genome. , 2009, Science.

[38]  Thomas Cremer,et al.  Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei. , 2008, Differentiation; research in biological diversity.

[39]  M. Krangel,et al.  Regulation of T cell receptor-alpha gene recombination by transcription. , 2006, Nature immunology.

[40]  M. Busslinger,et al.  Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene , 2005, Nature Immunology.

[41]  A. Pombo,et al.  Transcription factories: quantitative studies of nanostructures in the mammalian nucleus , 2004, Chromosome Research.

[42]  G. Cooper Chromosomes and Chromatin , 2000 .

[43]  Christian Münkel,et al.  Chromosome structure predicted by a polymer model , 1998 .

[44]  G van den Engh,et al.  Studies of metaphase and interphase chromosomes using fluorescence in situ hybridization. , 1993, Cold Spring Harbor symposia on quantitative biology.

[45]  J. Sedat,et al.  A direct approach to the structure of eukaryotic chromosomes. , 1978, Cold Spring Harbor symposia on quantitative biology.