Projection algorithms and monotone operators

This thesis consists of two parts. In Part I, projection algorithms for solving convex feasibility problems in Hilbert space are studied. Powerful techniques from Convex Analysis are employed within a very general framework that covers and extends many well-known results. Ostensibly different looking conditions sufficient for linear convergence are shown to be special instances of regularity--a concept new in this context. Numerous examples, including subgradient algorithms, are presented. Several notions of monotonicity of operators on Banach spaces are analyzed in Part II. Utilizing Convex and Functional Analysis, it is shown that for a bounded linear positive semi-definite operator, all these "monotonicities" coincide with the monotonicity of the conjugate operator. Moreover, monotonicity of the conjugate operator is automatic in many classical Banach spaces but not in spaces containing a complemented copy of the space of absolutely convergent sequences.

[1]  John von Neumann,et al.  The geometry of orthogonal spaces , 1950 .

[2]  A. Hoffman On approximate solutions of systems of linear inequalities , 1952 .

[3]  I. J. Schoenberg,et al.  The Relaxation Method for Linear Inequalities , 1954, Canadian Journal of Mathematics.

[4]  Ky Pan 5. On Systems of Linear Inequalities , 1957 .

[5]  Correction to “Subreflexive normed linear spaces” , 1958 .

[6]  Subreflexive normed linear spaces , 1958 .

[7]  R. Phelps Some subreflexive Banach spaces , 1959 .

[8]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[9]  R. Rockafellar,et al.  On the subdifferentiability of convex functions , 1965 .

[10]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[11]  Z. Opial Weak convergence of the sequence of successive approximations for nonexpansive mappings , 1967 .

[12]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[13]  F. Browder Convergence theorems for sequences of nonlinear operators in Banach spaces , 1967 .

[14]  Boris Polyak Minimization of unsmooth functionals , 1969 .

[15]  H. Rosenthal On quasi-complemented subspaces of Banach spaces, with an Appendix on compactness of operators from Lp(μ) to Lr(ν) , 1969 .

[16]  I. I. Eremin Fejér mappings and convex programming , 1969 .

[17]  U. Mosco Convergence of convex sets and of solutions of variational inequalities , 1969 .

[18]  Albert Wilansky,et al.  Topology for Analysis , 1970 .

[19]  R. Rockafellar,et al.  On the maximal monotonicity of subdifferential mappings. , 1970 .

[20]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[21]  F. Browder Nonlinear functional analysis , 1970 .

[22]  Aldo Ghizzetti,et al.  Theory and applications of monotone operators , 1970 .

[23]  M. Crandall Contributions To Nonlinear Functional Analysis , 1971 .

[24]  Jean-Pierre Gossez,et al.  Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs , 1971 .

[25]  E. H. Zarantonello Projections on Convex Sets in Hilbert Space and Spectral Theory: Part I. Projections on Convex Sets: Part II. Spectral Theory , 1971 .

[26]  Jean-Pierre Gossez,et al.  On the range of a coercive maximal monotone operator in a nonreflexive Banach space , 1972 .

[27]  Donald M. Simmons Linear programming for operations research , 1972 .

[28]  Differentiable functions and rough norms on Banach spaces , 1972 .

[29]  D. Varberg Convex Functions , 1973 .

[30]  H. Rosenthal A characterization of banach spaces containing L. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Rosenthal A Characterization of Banach Spaces Containing l1 , 1974 .

[32]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[33]  R. Holmes Geometric Functional Analysis and Its Applications , 1975 .

[34]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[35]  Stephen M. Robinson,et al.  Regularity and Stability for Convex Multivalued Functions , 1976, Math. Oper. Res..

[36]  Jean-Pierre Gossez,et al.  On a convexity property of the range of a maximal monotone operator , 1976 .

[37]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[38]  C. W. Groetsch,et al.  Generalized inverses of linear operators , 1977 .

[39]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[40]  A. Haraux How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities , 1977 .

[41]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[42]  J. Gossez On the extensions to the bidual of a maximal monotone operator , 1977 .

[43]  Gabor T. Herman,et al.  Relaxation methods for image reconstruction , 1978, CACM.

[44]  A. Wilansky Modern Methods in Topological Vector Spaces , 1978 .

[45]  H. Rosenthal Some recent discoveries in the isomorphic theory of Banach spaces , 1978 .

[46]  D. Pascali,et al.  Nonlinear mappings of monotone type , 1979 .

[47]  H. Weinert Ekeland, I. / Temam, R., Convex Analysis and Variational Problems. Amsterdam‐Oxford. North‐Holland Publ. Company. 1976. IX, 402 S., Dfl. 85.00. US $ 29.50 (SMAA 1) , 1979 .

[48]  V. Dolezal Monotone operators and applications in control and network theory , 1979 .

[49]  A. S. Solodovnikov,et al.  Systems of Linear Inequalities , 1979 .

[50]  A. Ioffe,et al.  Theory of extremal problems , 1979 .

[51]  Jean-Louis Goffin,et al.  The Relaxation Method for Solving Systems of Linear Inequalities , 1980, Math. Oper. Res..

[52]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[53]  K. Stromberg Introduction to classical real analysis , 1981 .

[54]  Yair Censor,et al.  Cyclic subgradient projections , 1982, Math. Program..

[55]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[56]  Ronald E. Bruck Random products of contractions in metric and Banach Spaces , 1982 .

[57]  John R. Giles,et al.  Convex analysis with application in the differentiation of convex functions , 1982 .

[58]  J. Spingarn Partial inverse of a monotone operator , 1983 .

[59]  M. Trummer SMART — An algorithm for reconstructing pictures from projections , 1983 .

[60]  Guy Pierra,et al.  Decomposition through formalization in a product space , 1984, Math. Program..

[61]  Jonathan M. Borwein,et al.  Absolute norms on vector lattices , 1984, Proceedings of the Edinburgh Mathematical Society.

[62]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[63]  Y. Censor Iterative Methods for the Convex Feasibility Problem , 1984 .

[64]  M. Tsukada Convergence of best approximations in a smooth Banach space , 1984 .

[65]  J. Diestel Sequences and series in Banach spaces , 1984 .

[66]  H. Rosenthal,et al.  Norm-attainment of linear functionals on subspaces and characterizations of Tauberian operators. , 1985 .

[67]  A. Pierro,et al.  A simultaneous projections method for linear inequalities , 1985 .

[68]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[69]  J. Borwein Stability and regular points of inequality systems , 1986 .

[70]  S. Singh Nonlinear Functional Analysis and Its Applications , 1986 .

[71]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[72]  H. Attouch,et al.  Duality for the Sum of Convex Functions in General Banach Spaces , 1986 .

[73]  B. Frieden,et al.  Image recovery: Theory and application , 1987, IEEE Journal of Quantum Electronics.

[74]  Y. Censor,et al.  On some optimization techniques in image reconstruction from projections , 1987 .

[75]  A. Pierro,et al.  A finitely convergent “row-action” method for the convex feasibility problem , 1988 .

[76]  Yair Censor,et al.  Parallel application of block-iterative methods in medical imaging and radiation therapy , 1988, Math. Program..

[77]  Howard L. Weinert,et al.  Error bounds for the method of alternating projections , 1988, Math. Control. Signals Syst..

[78]  Max A. Viergever Introduction to Discrete Reconstruction Methods in Medical Imaging , 1988 .

[79]  J. Dye A generalization of a theorem of Amemiya and Ando on the convergence of random products of contractions in Hilbert space , 1989 .

[80]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[81]  D. Dulst,et al.  Characterizations of Banach spaces not containing $L 1$ , 1989 .

[82]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[83]  R. Phelps Convex Functions, Monotone Operators and Differentiability , 1989 .

[84]  J. Zowe,et al.  Relaxed outer projections, weighted averages and convex feasibility , 1990 .

[85]  Behzad Djafari Rouhani Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space , 1990 .

[86]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[87]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[88]  Banach spaces with Property (w) , 1991, math/9201230.

[89]  T. Gamelin,et al.  Spectra of algebras of analytic functions on a Banach spaces. , 1991 .

[90]  Remarks on weak compactness of operators defined on certain injective tensor products , 1992 .

[91]  S. Reich,et al.  Unrestricted iterations of nonexpansive mappings in Hilbert space , 1992 .

[92]  On Stability Problems of Some Properties in Banach Spaces , 2020 .

[93]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part II: Explicit lattice models , 1992, Math. Program..

[94]  M. Ibrahim Sezan,et al.  An overview of convex projections theory and its application to image recovery problems , 1992 .

[95]  Henry Wolkowicz,et al.  Generalizations of Slater's constraint qualification for infinite convex programs , 1992, Math. Program..

[96]  Paul Tseng,et al.  On the Convergence of the Products of Firmly Nonexpansive Mappings , 1992, SIAM J. Optim..

[97]  N. Lloyd TOPICS IN METRIC FIXED POINT THEORY (Cambridge Studies in Advanced Mathematics 28) , 1992 .

[98]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part I: Quasi relative interiors and duality theory , 1992, Math. Program..

[99]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[100]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[101]  Subdifferentials are locally maximal monotone , 1993, Bulletin of the Australian Mathematical Society.

[102]  R. Phelps Lectures on maximal monotone operators , 1993, math/9302209.

[103]  Heinz H. Bauschke,et al.  On the convergence of von Neumann's alternating projection algorithm for two sets , 1993 .

[104]  P. L. Combettes The foundations of set theoretic estimation , 1993 .

[105]  J. Gutiérrez Weakly continuous functions on Banach spaces not containing , 1993 .

[106]  S. Simons Subtangents with controlled slope , 1994 .

[107]  Jonathan M. Borwein,et al.  A Survey of Examples of Convex Functions and Classifications of Normed Spaces , 1994 .

[108]  Heinz H. Bauschke,et al.  Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .

[109]  Continuous Linear Monotone Operators on Banach Spaces , 1995 .

[110]  K. Kiwiel Block-iterative surrogate projection methods for convex feasibility problems , 1995 .

[111]  Gabor T. Herman,et al.  Image Reconstruction From Projections , 1975, Real Time Imaging.

[112]  R. R. Phelps,et al.  Some properties of maximal monotone operators on nonreflexive Banach spaces , 1995 .

[113]  F. Deutsch The Angle Between Subspaces of a Hilbert Space , 1995 .

[114]  Heinz H. Bauschke A norm convergence result on random products of relaxed projections in Hilbert space , 1995 .

[115]  Heinz H. Bauschke The Approximation of Fixed Points of Compositions of Nonexpansive Mappings in Hilbert Space , 1996 .

[116]  D. Zagrodny The maximal monotonicity of the subdifferentials of convex functions: Simons' problem , 1996 .

[117]  Stephen Simons,et al.  The range of a monotone operator , 1996 .

[118]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[119]  James V. Burke,et al.  A Unified Analysis of Hoffman's Bound via Fenchel Duality , 1996, SIAM J. Optim..

[120]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[121]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[122]  K. Kiwiel The efficiency of subgradient projection methods for convex optimization, part I: general level methods , 1996 .

[123]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[124]  Hein Hundal,et al.  The Rate of Convergence for the Method of Alternating Projections, II , 1997 .

[125]  Patrick L. Combettes,et al.  Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections , 1997, IEEE Trans. Image Process..

[126]  Krzysztof C. Kiwiel,et al.  Surrogate Projection Methods for Finding Fixed Points of Firmly Nonexpansive Mappings , 1997, SIAM J. Optim..

[127]  P. L. Combettes,et al.  Hilbertian convex feasibility problem: Convergence of projection methods , 1997 .

[128]  Heinz H. Bauschke,et al.  The method of cyclic projections for closed convex sets in Hilbert space , 1997 .

[129]  Heinz H. Bauschke,et al.  Legendre functions and the method of random Bregman projections , 1997 .

[130]  Frank Deutsch,et al.  Two generalizations of Dykstra’s cyclic projections algorithm , 1997, Math. Program..

[131]  Levent Tunçel,et al.  Characterization of the barrier parameter of homogeneous convex cones , 1998, Math. Program..