Population viability in three trophic-level food chains

The perpetuation of three-trophic level ecosystems where the three species exhibit unpredictable time-varying survival strategies is described by a specific set, the viability kernel, gathering all states from which there exists at least one trajectory safeguarding each species over a given density threshold. The strategies permitting this property are delineated and called viable strategies. All solutions starting outside the viability kernel lead to too low densities or extinction. The viability approach highlights the timing of strategy changes necessary for a system to perpetuate itself or alternatively to lead one species to extinction. The study of the dependence of the viability kernel on the admissible sets of strategies reveals the minimal flexibilities necessary for the existence of the system. The shape of the viability kernel determines whether the exogenous addition or substraction of prey or predator will endanger the system or not, thus gathering different experiments with opposite results. The comparison of the coexistence kernel with viability kernels for one, two or three species points out the importance of repeated strategies, not necessarily in a periodic manner, thus emphasizing the concept of repetitions in ecosystems instead of cycles as a key feature of coexistence.

[1]  L. Luckinbill The Effects of Space and Enrichment on a Predator‐Prey System , 1974 .

[2]  William W. Murdoch,et al.  Predator–prey dynamics in environments rich and poor in nutrients , 1990, Nature.

[3]  Mark A. McPeek,et al.  Predation, Competition, and Prey Communities: A Review of Field Experiments , 1985 .

[4]  L. Luckinbill REGULATION, STABILITY, AND DIVERSITY IN A MODEL EXPERIMENTAL MICROCOSM' , 1979 .

[5]  Richard Law,et al.  PERMANENCE AND THE ASSEMBLY OF ECOLOGICAL COMMUNITIES , 1996 .

[6]  Jean-Pierre Aubin,et al.  Dynamic Economic Theory , 1997 .

[7]  Sergio Rinaldi,et al.  Low- and high-frequency oscillations in three-dimensional food chain systems , 1992 .

[8]  T. Vincent,et al.  ORGANIZATION OF PREDATOR‐PREY COMMUNITIES AS AN EVOLUTIONARY GAME , 1992, Evolution; international journal of organic evolution.

[9]  Noël Bonneuil,et al.  Viable populations in a prey–predator system , 1997 .

[10]  James C. Hickman,et al.  Environmental unpredictability and plastic energy allocation strategies in the annual Polygonum cascadense (Polygonaceae) , 1975 .

[11]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[12]  H. I. Freedman,et al.  Persistence in models of three interacting predator-prey populations , 1984 .

[13]  P. Abrams ALTERNATIVE MODELS OF CHARACTER DISPLACEMENT AND NICHE SHIFT. I. ADAPTIVE SHIFTS IN RESOURCE USE WHEN THERE IS COMPETITION FOR NUTRITIONALLY NONSUBSTITUTABLE RESOURCES , 1987, Evolution; international journal of organic evolution.

[14]  G. E. Philpots The struggle for life. , 1940, The Eugenics review.

[15]  Michael J. Crawley,et al.  Colonization, Succession, and Stability , 1988 .

[16]  H. M. El-Owaidy,et al.  Mathematical analysis of a food-web model , 2001, Appl. Math. Comput..

[17]  T. Gard Persistence in Food Webs , 1984 .

[18]  H. Wilbur Competition, Predation, and the Structure of the Ambystoma-Rana Sylvatica Community , 1972 .

[19]  Peter J. Morin,et al.  Food Web Architecture and Population Dynamics: Theory and Empirical Evidence , 1995 .

[20]  D. J. Hall,et al.  Perturbation and Resilience: A Long-Term, Whole-Lake Study of Predator Extinction and Reintroduction , 1995 .

[21]  R. May Food webs. , 1983, Science.

[22]  T. Vincent,et al.  COEVOLUTION AS AN EVOLUTIONARY GAME , 1987, Evolution; international journal of organic evolution.

[23]  J. Sebag Shaken not stirred. , 2001, Ophthalmology.

[24]  L. Luckinbill,et al.  Coexistence in Laboratory Populations of Paramecium Aurelia and Its Predator Didinium Nasutum , 1973 .

[25]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[26]  J. T. Giesel Reproductive Strategies as Adaptations to Life in Temporally Heterogeneous Environments , 1976 .

[27]  T. Vincent,et al.  A theory for the evolutionary game , 1987 .

[28]  Mitio Nagumo Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen , 1942 .

[29]  H. Wilbur,et al.  EXPERIMENTAL ECOLOGY OF FOOD WEBS: COMPLEX SYSTEMS IN TEMPORARY PONDS , 1997 .

[30]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[31]  M. Symonds,et al.  Evolutionary Ecology , 2004, Evolutionary Ecology.

[32]  Joseph W.-H. So,et al.  Global stability and persistence of simple food chains , 1985 .

[33]  Simone Campanoni Competition , 1866, Nature.

[34]  R. Harris,et al.  Salamander Predation and the Structure of Experimental Communities: Anuran Responses , 1983 .

[35]  Thomas L. Vincent,et al.  Evolution under nonequilibrium dynamics , 1987 .

[36]  Noël Bonneuil,et al.  Making ecosystem models viable , 2003, Bulletin of mathematical biology.

[37]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[38]  Thomas L. Vincent,et al.  The evolutionary response of systems to a changing environment , 1989 .

[39]  Jerry C. Blackford,et al.  Self-assembling food webs : a global viewpoint of coexistence of species in Lotka-Volterra communities , 1992 .

[40]  P. Saint-Pierre Approximation of the viability kernel , 1994 .

[41]  A. Hastings Food Web Theory and Stability , 1988 .

[42]  G. Salt,et al.  Predation in an Experimental Protozoan Population (Woodruffia-Paramecium) , 1967 .

[43]  A. Rescigno The struggle for life: III. A predator-prey chain , 1972 .

[44]  K Sigmund,et al.  Shaken not stirred: on permanence in ecological communities. , 1998, Theoretical population biology.

[45]  Thomas G. Hallam,et al.  Persistence in food webs—I Lotka-Volterra food chains , 1979 .

[46]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[47]  T. Gard Persistence in food webs: holling-type food chains , 1980 .

[48]  H. I. Freedman,et al.  Mathematical analysis of some three-species food-chain models , 1977 .

[49]  H. Wilbur,et al.  Regulation of Structure in Complex Systems: Experimental Temporary Pond Communities , 1987 .