Invariant manifolds of parabolic fixed points (II). Approximations by sums of homogeneous functions
暂无分享,去创建一个
[1] E. Fontich,et al. Invariant manifolds of parabolic fixed points (I). Existence and dependence on parameters , 2016, Journal of Differential Equations.
[2] M. Abate. Fatou Flowers and Parabolic Curves , 2015, 1501.02176.
[3] Àlex Haro,et al. A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2006, SIAM J. Appl. Dyn. Syst..
[4] R. Llave,et al. The parameterization method for invariant manifolds III: overview and applications , 2005 .
[5] E. Fontich,et al. Stable manifolds associated to fixed points with linear part equal to identity , 2004 .
[6] M. Hakim. Analytic transformations of $(\mathbf{C}^p,0)$ tangent to the identity , 1998 .
[7] R. Llave,et al. The parameterization method for one- dimensional invariant manifolds of higher dimensional parabolic fixed points , 2007 .
[8] Ernest Fontich Julià,et al. The parameterization method for invariant manifolds , 2006 .
[9] R. Llave,et al. The parameterization method for invariant manifolds. I: Manifolds associated to non-resonant subspaces , 2003 .
[10] R. Llave,et al. The parameterization method for invariant manifolds. II: Regularity with respect to parameters , 2003 .