Input current ripple cancellation in synchronized, parallel connected critically continuous boost converters

In high power factor AC-to-DC applications, boost power converters operating on the boundary of continuous mode and discontinuous mode switch with variable frequency and draw high peak input currents. A method is presented to parallel two or more of these power converters to reduce the high peak input currents. Each power converter continues to operate on the boundary of continuous mode and discontinuous mode and maintains the benefits of zero-voltage switching.

[1]  A. K. Behera,et al.  A comparison between hysteretic and fixed frequency boost converters used for power factor correction , 1993, Proceedings Eighth Annual Applied Power Electronics Conference and Exposition,.

[2]  L.C. de Freitas,et al.  A new ZCS-ZVS-PWM boost converter with unity power factor operation , 1994, Proceedings of 1994 IEEE Applied Power Electronics Conference and Exposition - ASPEC'94.

[3]  L. Balogh,et al.  Power-factor correction with interleaved boost converters in continuous-inductor-current mode , 1993, Proceedings Eighth Annual Applied Power Electronics Conference and Exposition,.

[4]  Jih-Sheng Lai,et al.  Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode , 1993, Proceedings Eighth Annual Applied Power Electronics Conference and Exposition,.

[5]  Johann W. Kolar,et al.  Self-adjusting input current ripple cancellation of coupled parallel connected hysteresis-controlled boost power factor correctors , 1995, Proceedings of PESC '95 - Power Electronics Specialist Conference.