Methods for modelling and generating probabilistic components in digital computer simulation when the standard distributions are not adequate: A survey

Methods of modelling probabilistic components which are not adequately represented by the standard continuous distributions (such as normal, gamma, and Weibull) are surveyed. The methods are categorized as systems of distributions, approximations to the cumulative distribution function, and four-parameter distributions. Emphasis is on generality, determination of appropriate parameter values, and random variate generation.

[1]  Lester A. Gerhardt,et al.  A Class of Pdf Modeling Algorithms , 1972, IEEE Trans. Syst. Man Cybern..

[2]  M. N. Cawdery,et al.  A Note on a New Method of Histogram Sampling , 1974 .

[3]  Donald J. Wheeler,et al.  An approximation for simuiation of gamma distributions , 1975 .

[4]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[5]  D. E. Barton,et al.  The conditions under which Gram-Charlier and Edgeworth curves are positive definite and unimodal , 1952 .

[6]  W. A. Thompson,et al.  On an extreme rank sum test for outliers , 1963 .

[7]  A. Atkinson,et al.  The Computer Generation of Beta, Gamma and Normal Random Variables , 1976 .

[8]  S. Gupta On Some Multiple Decision (Selection and Ranking) Rules , 1965 .

[9]  Young Jack Lee Nonparametric ranking and selection procedures , 1974 .

[10]  N. L. Johnson Systems of frequency curves derived from the first law of Laplace , 1955 .

[11]  K. D. Tocher,et al.  The art of simulation , 1967 .

[12]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[13]  Robert V. Hogg,et al.  A Two-Sample Adaptive Distribution-Free Test , 1975 .

[14]  Irving W. Burr,et al.  Pameters for a general system of distributions to match a grid of α3 and α4 , 1973 .

[15]  B. G. Marsden,et al.  On the distribution of the , 1973 .

[16]  N. L. Johnson,et al.  Table of percentage points of Pearson curves, for given √β1 and β2, expressed in standard measure , 1963 .

[17]  N. Cox Statistical Models in Engineering , 1970 .

[18]  J. Tukey One Degree of Freedom for Non-Additivity , 1949 .

[19]  M. Jöhnk Erzeugung von betaverteilten und gammaverteilten Zufallszahlen , 1964 .

[20]  I. W. Burr Cumulative Frequency Functions , 1942 .

[21]  J. Whittaker Generating Gamma and Beta Random Variables with Non-Integral Shape Parameters , 1974 .

[22]  J. Meigs,et al.  WHO Technical Report , 1954, The Yale Journal of Biology and Medicine.

[23]  A. C. Atkinson,et al.  A Switching Algorithm for the Generation of Beta Random Variables with at Least One Parameter Less than 1 , 1976 .

[24]  George S. Fishman,et al.  Solution of Large Networks by Matrix Methods , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Norman L. Johnson,et al.  Tables to facilitate fitting SU frequency curves , 1965 .

[26]  Thomas M. Kisko An Automated Method of Creating Piecewise Linear Cumulative Probability Distributions , 1976 .

[27]  Bruce W. Schmeiser,et al.  Rejection Methods for Beta Variate Generation. , 1977 .

[28]  N. L. Johnson,et al.  Systems of Frequency Curves , 1969 .

[29]  H. Leon Harter,et al.  Maximum-Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples , 1967 .

[30]  Edgar L. Butler,et al.  General random number generator [G5] , 1970, CACM.

[31]  E. J. McGrath,et al.  Techniques for efficient Monte Carlo simulation. Volume II. Random number generation for selected probability distributions , 1973 .

[32]  A. W. Swan Handbook of Statistical Tables , 1964 .

[33]  J. K. Ord,et al.  Families of frequency distributions , 1973 .

[34]  Jason C Hsu On Some Decision-Theoretic Contributions to the Problem of Subset Selection. , 1977 .

[35]  Roy C. Milton,et al.  Computer Evaluation of the Normal and Inverse Normal Distribution Functions , 1969 .

[36]  K. Pearson Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .

[37]  Shanti S. Gupta,et al.  On a Statistic which Arises in Selection and Ranking Problems , 1957 .

[38]  Stuart Jay Deutsch,et al.  A Versatile Four Parameter Family of Probability Distributions Suitable for Simulation , 1977 .

[39]  R. Fisher,et al.  148: Moments and Cumulants in the Specification of Distributions. , 1938 .

[40]  B. L. Joiner,et al.  Some Properties of the Range in Samples from Tukey's Symmetric Lambda Distributions , 1971 .

[41]  Bruce W. Schmeiser,et al.  An approximate method for generating symmetric random variables , 1972, CACM.

[42]  Shanti S. Gupta,et al.  On Multiple Decision (Subset Selection) Procedures , 1971 .

[43]  E. Cornish,et al.  The Percentile Points of Distributions Having Known Cumulants , 1960 .

[44]  C. A. Smith,et al.  Techniques for efficient Monte Carlo simulation. Volume 1. Selecting probability distributions , 1975 .

[45]  Pandu R. Tadikamalla,et al.  An approximate method for generating gamma and other variates , 1975 .