Effect of gamma irradiation on Portland cement: Hydrogen evolution and radiation resistance

[1]  V. Ershov,et al.  Radiolysis of the magnesium phosphate cement on γ-irradiation , 2020 .

[2]  V. Nikolaenko,et al.  Features Of The Formation Of The Structure And Properties Of Aerated Concrete Due To Its Forced Carbonate Hardening , 2018, IOP Conference Series: Materials Science and Engineering.

[3]  P. VarlakovA.,et al.  THE EFFECT OF RADIATION DOSES TYPICAL FOR HIGH-LEVEL WASTE ON THE PROPERTIES OF THE CEMENT MATRIX , 2018 .

[4]  Patrice Mégret,et al.  Proof of Concept for Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Supercontainers Designed for Nuclear Waste Storage , 2016, IEEE Transactions on Nuclear Science.

[5]  R. Černý,et al.  Thermogravimetry of Portland Cement from Argentina and Czech Republic , 2015 .

[6]  C. Vuye,et al.  Cement-waste interactions: Hardening self-compacting mortar exposed to gamma radiation , 2015 .

[7]  J. Provis,et al.  Gamma irradiation resistance of an early age slag-blended cement matrix for nuclear waste encapsulation , 2015 .

[8]  M. I. Ojovan,et al.  Cementitious Materials for Nuclear Waste Immobilization , 2014 .

[9]  M. I. Ojovan,et al.  Cementitious Materials for Nuclear Waste Immobilization: Rahman/Cementitious Materials for Nuclear Waste Immobilization , 2014 .

[10]  F. Bart Cement-Based Materials for Nuclear Waste Storage , 2014 .

[11]  J. Dweck,et al.  Importance of quantitative thermogravimetry on initial cement mass basis to evaluate the hydration of cement pastes and mortars , 2013, Journal of Thermal Analysis and Calorimetry.

[12]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[13]  H. V. Humbeeck,et al.  Closure of the concrete supercontainer in hot cell under thermal load , 2011 .

[14]  M. I. Ojovan,et al.  Long-term field and laboratory leaching tests of cemented radioactive wastes. , 2011, Journal of hazardous materials.

[15]  F. Glasser Application of inorganic cements to the conditioning and immobilisation of radioactive wastes , 2011 .

[16]  B. Ershov,et al.  Gas formation upon γ-irradiation of cement material , 2008 .

[17]  P. Bouniol,et al.  A comprehensive model to describe radiolytic processes in cement medium , 2008 .

[18]  L. Black,et al.  Effects of pre-hydration on hydraulic properties on Portland cement and synthetic clinker phases , 2008 .

[19]  J. Sercombe,et al.  Experimental Study of Gas Diffusion in Cement Paste , 2007 .

[20]  D. Schild,et al.  X-ray photoelectron spectroscopic investigation of nanocrystalline calcium silicate hydrates synthesised by reactive milling , 2006 .

[21]  K. Trtík,et al.  Effect of γ-irradiation on strength of concrete for nuclear-safety structures , 2005 .

[22]  William E. Lee,et al.  An Introduction to Nuclear Waste Immobilisation , 2005 .

[23]  L. M. Milian,et al.  The effect of gamma radiation on the strength of Portland cement mortars , 2001 .

[24]  P. Bouniol,et al.  Aspects physico-chimiques du comportement des bétons sous irradiation , 1997 .

[25]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[26]  M. Michaux,et al.  2 Chemistry and Characterization of Portland Cement , 1990 .

[27]  J. H. Kessler,et al.  Cement-based radioactive waste hosts formed under elevated temperatures and pressures (FUETAP concretes) for Savannah River Plant high-level defense waste , 1983 .

[28]  D. Roy,et al.  High-Level Radioactive Waste Incorporation into (Special) Cements , 1978 .