A selective replacement strategy to a deep-red phosphor for plant growth and optical temperature sensing

[1]  S. Vaidyanathan,et al.  Stable and efficient narrow-band red emitters with high colour purity for white LEDs and plant growth applications. , 2022, Dalton transactions.

[2]  R. Devi,et al.  Narrow-Band Red-Emitting Phosphors with High Color Purity, Trifling Thermal and Concentration Quenching for Hybrid White LEDs and Li3Y3BaSr(MoO4)8:Sm3+, Eu3+-Based Deep-Red LEDs for Plant Growth Applications. , 2022, Inorganic chemistry.

[3]  S. Vaidyanathan,et al.  Efficient and ultra-thermally stable Eu3+ and Sm3+-activated narrow-band red/deep red-emitting phosphors and their versatile applications. , 2021, Dalton transactions.

[4]  Xianju Zhou,et al.  High-sensitivity and wide-temperature-range dual-mode optical thermometry under dual-wavelength excitation in a novel double perovskite tellurate oxide. , 2021, Dalton transactions.

[5]  Y. Kong,et al.  Defect‐Induced Self‐Reduction and Anti‐Thermal Quenching in NaZn(PO3)3:Mn2+ Red Phosphor , 2021, Advanced Optical Materials.

[6]  Xinglei Feng,et al.  The novel Sr3LiSbO6:Mn4+, Ca2+ far-red-emitting phosphors with over 95% internal quantum efficiency for indoor plant growth LEDs , 2021 .

[7]  Hu Liu,et al.  Improved stability and efficiency of perovskite via a simple solid diffusion method , 2021 .

[8]  Yongchao Jia,et al.  ZnGa2-yAlyO4:Mn2+,Mn4+ Thermochromic Phosphors: Valence State Control and Optical Temperature Sensing. , 2020, Inorganic chemistry.

[9]  Zhao‐Qing Liu,et al.  Localized Charge Accumulation Driven by Li+ Incorporation for Efficient LED Phosphors with Tunable Photoluminescence , 2020 .

[10]  Xiaoyong Huang,et al.  Optical properties of deep-red-emitting Ca2YTaO6:Mn4+ phosphors for LEDs applications , 2020 .

[11]  B. Fond,et al.  Thermochromic Luminescent Nanomaterials Based on Mn4+/Tb3+ Codoping for Temperature Imaging with Digital Cameras , 2020, ACS applied materials & interfaces.

[12]  M. Molokeev,et al.  Structure analysis, tuning photoluminescence and enhancing thermal stability on Mn4+-doped La2-xYxMgTiO6 red phosphor for agricultural lighting , 2020 .

[13]  M. Dramićanin Trends in luminescence thermometry , 2020 .

[14]  Fengli Yang,et al.  A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs , 2020 .

[15]  S. Vaidyanathan,et al.  Zero-concentration quenching: a novel Eu3+ based red phosphor with non-layered crystal structure for white LEDs and NaSrY(MoO4)3:Sm3+ based deep-red LEDs for plant growth. , 2020, Dalton transactions.

[16]  D. Poelman,et al.  Achieving Efficient Red-Emitting Sr2Ca1−δLnδWO6:Mn4+ (Ln = La, Gd, Y, Lu, δ = 0.10) Phosphors with Extraordinary Luminescence Thermal Stability for Potential UV-LEDs Application via Facile Ion Substitution in Luminescence-Ignorable Sr2CaWO6:Mn4+ , 2020 .

[17]  Xueyun Liu,et al.  Luminescence and self-referenced optical temperature sensing performance in Ca2YZr2Al3O12:Bi3+,Eu3+ phosphors , 2020 .

[18]  Yongchao Jia,et al.  Site Occupation and Luminescence of Novel Orange-Red Ca3M2Ge3O12:Mn2+,Mn4+ (M = Al, Ga) Phosphors , 2020 .

[19]  Zhao‐Qing Liu,et al.  Dual-Mode Optical Thermometry Design in Lu3Al5O12:Ce3+/Mn4+ Phosphor. , 2020, Inorganic chemistry.

[20]  Federico A. Rabuffetti,et al.  Bandshift Luminescence Thermometry Using Mn4+:Na4Mg(WO4)3 Phosphors , 2019 .

[21]  Jun Lin,et al.  Luminescence and Energy-Transfer Properties in Bi3+/Mn4+-Codoped Ba2GdNbO6 Double-Perovskite Phosphors for White-Light-Emitting Diodes. , 2019, Inorganic chemistry.

[22]  Xiaoyong Huang,et al.  Simultaneously enhanced far-red luminescence and thermal stability in Ca3Al4ZnO10:Mn4+ phosphor via Mg2+ doping for plant growth lighting , 2019, Journal of Alloys and Compounds.

[23]  Ting Chen,et al.  Synthesis and photoluminescence properties of Ca2LaTaO6:Mn4+ phosphor for plant growth LEDs , 2019, Journal of Alloys and Compounds.

[24]  Bin Li,et al.  Synthesis and photoluminescence properties of deep red-emitting CaGdAlO4:Mn4+ phosphors for plant growth LEDs , 2018, Journal of Luminescence.

[25]  B. Lei,et al.  Tunable dual emission of Ca3Al4ZnO10:Bi3+,Mn4+via energy transfer for indoor plant growth lighting , 2018 .

[26]  Xiaoyong Huang,et al.  Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: Towards indoor plant cultivation application , 2018 .

[27]  Liya Zhou,et al.  Preparation, structural and optical characteristics of a deep red-emitting Mg2Al4Si5O18: Mn4+ phosphor for warm w-LEDs , 2018 .

[28]  Qiying Peng,et al.  Photoluminescence properties of broadband deep-red-emitting Na2MgAl10O17:Mn4+ phosphor , 2017 .

[29]  Qiying Peng,et al.  Synthesis and luminescence characteristics of novel red-emitting Ba2TiGe2O8:Mn4+ phosphor , 2017 .

[30]  Xiaobao Yang,et al.  Highly Efficient and Stable Narrow-Band Red Phosphor Cs2SiF6:Mn4+ for High-Power Warm White LED Applications , 2017 .

[31]  Liya Zhou,et al.  Synthesis, structure, and luminescence properties of a novel double-perovskite Sr2LaNbO6:Mn4+ phosphor , 2017 .

[32]  Chongfeng Guo,et al.  Ab Initio Site Occupancy and Far-Red Emission of Mn4+ in Cubic-Phase La(MgTi)1/2O3 for Plant Cultivation. , 2017, ACS applied materials & interfaces.

[33]  Yihua Hu,et al.  An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs , 2017 .

[34]  Chenglong Zhao,et al.  Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid sate lighting: Synthesis, structure and photoluminescent properties , 2017 .

[35]  Ping Huang,et al.  Dual-activator luminescence of RE/TM:Y3Al5O12 (RE = Eu3+, Tb3+, Dy3+; TM = Mn4+, Cr3+) phosphors for self-referencing optical thermometry , 2016 .

[36]  X. Chen,et al.  Sr2LaAlTiO7: a new Ruddlesden–Popper compound with excellent microwave dielectric properties , 2016 .

[37]  M. Fang,et al.  Phase Transformation in Ca3(PO4)2:Eu2+ via the Controlled Quenching and Increased Eu2+ Content: Identification of New Cyan‐Emitting α‐Ca3(PO4)2:Eu2+ Phosphor , 2015 .

[38]  Chiara Piovene,et al.  Optimal red:blue ratio in led lighting for nutraceutical indoor horticulture , 2015 .

[39]  Yuansheng Wang,et al.  CaMg₂Al₁₆O₂₇:Mn⁴⁺-based red phosphor: a potential color converter for high-powered warm W-LED. , 2014, ACS applied materials & interfaces.

[40]  V. Atuchin,et al.  Blue-shift of Eu²⁺ emission in (Ba,Sr)₃Lu(PO₄)₃:Eu²⁺ eulytite solid-solution phosphors resulting from release of neighbouring-cation-induced stress. , 2014, Dalton transactions.

[41]  V. Atuchin,et al.  Photoluminescence Tuning via Cation Substitution in Oxonitridosilicate Phosphors: DFT Calculations, Different Site Occupations, and Luminescence Mechanisms , 2014 .

[42]  M. Du Chemical trends of Mn4+ emission in solids , 2014 .

[43]  K. Kakurai,et al.  Neutron diffraction study on magnetic structures in a La1.37Sr1.63Mn2O7single crystal under hydrostatic pressures of up to 0.8 GPa , 2013 .

[44]  S. R. Bland,et al.  X-ray resonant scattering study of the incommensurate charge-orbital density wave in La2−2xSr1+2xMn2O7 (x = 0.7) , 2010 .

[45]  Naichia Yeh,et al.  High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation , 2009 .

[46]  David R. Clarke,et al.  Doped Oxides for High-Temperature Luminescence and Lifetime Thermometry , 2009 .

[47]  R. Morrow LED Lighting in Horticulture , 2008 .

[48]  Mingying Peng,et al.  The reduction of Eu3+ to Eu2+ in BaMgSiO4∶Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+ phosphor , 2003 .

[49]  I. Zvereva,et al.  Complex aluminates RE2SrAl2O7 (RE = La, Nd, Sm–Ho): Cation ordering and stability of the double perovskite slab–rocksalt layer P2/RS intergrowth , 2003 .

[50]  Lunhua He,et al.  The structure and magnetic properties of La2-2xSr1Ca2xMn2O7 (x = 0.25-1.00) , 2001 .

[51]  H. Choi,et al.  Re-entrant charge-ordering behaviour in the layered manganites La2-2xSr1+2xMn2O7 , 2001 .

[52]  M. Davolos,et al.  Luminescence of Europium(III) and Manganese(II) in Barium and Zinc Orthosilicate , 2001 .

[53]  Wei Chen,et al.  Luminescence enhancement of EuS nanoclusters in zeolite , 2000 .

[54]  J. F. Mitchell,et al.  Sr3Mn2O7: Mn4+Parent Compound of then=2 Layered CMR Manganites , 1998 .

[55]  Kenneth T. V. Grattan,et al.  Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation , 1998 .

[56]  Zhan-guo Wang,et al.  Some new observation on the formation and optical properties of Cds clusters in zeolite-Y , 1996 .

[57]  S. Bhushan,et al.  Temperature dependent studies of cathodoluminescence of green band of ZnO crystals , 1988 .

[58]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[59]  G. L. Flem,et al.  Les phases SrLa2Al2O7 et SrGd2Al2O7 , 1975 .

[60]  N. Matwiyoff,et al.  The electronic spectrum of cesium hexafluoromanganese(IV) , 1971 .

[61]  G. Blasse Energy transfer in oxidic phosphors , 1968 .

[62]  D. L. Dexter,et al.  Theory of Concentration Quenching in Inorganic Phosphors , 1954 .

[63]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .