Rectangular mixed elements for elasticity with weakly imposed symmetry condition

We present new rectangular mixed finite elements for linear elasticity. The approach is based on a modification of the Hellinger–Reissner functional in which the symmetry of the stress field is enforced weakly through the introduction of a Lagrange multiplier. The elements are analogues of the lowest order elements described in Arnold et al. (Math Comput 76:1699–1723, 2007). Piecewise constants are used to approximate the displacement and the rotation. The first order BDM elements are used to approximate each row of the stress field.

[1]  Michel Fortin,et al.  Mixed Finite Elements, Compatibility Conditions, and Applications , 2008 .

[2]  M. E. Morley A family of mixed finite elements for linear elasticity , 1989 .

[3]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[4]  D. Arnold,et al.  RECTANGULAR MIXED FINITE ELEMENTS FOR ELASTICITY , 2005 .

[5]  Numedsche,et al.  A Family of Mixed Finite Elements for the Elasticity Problem , 2022 .

[6]  Serge Nicaise,et al.  An a posteriori error estimator for the Lamé equation based on equilibrated fluxes , 2007 .

[7]  M. Fortin Old and new finite elements for incompressible flows , 1981 .

[8]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[9]  Douglas N. Arnold,et al.  The Serendipity Family of Finite Elements , 2011, Found. Comput. Math..

[10]  W. Marsden I and J , 2012 .

[11]  Gerard Awanou Two Remarks on Rectangular Mixed Finite Elements for Elasticity , 2012, J. Sci. Comput..

[12]  Bernardo Cockburn,et al.  A new elasticity element made for enforcing weak stress symmetry , 2010, Math. Comput..

[13]  R. Stenberg On the construction of optimal mixed finite element methods for the linear elasticity problem , 1986 .

[14]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[15]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[16]  Bernardo Cockburn,et al.  A Mixed Finite Element Method for Elasticity in Three Dimensions , 2005, J. Sci. Comput..

[17]  Douglas N. Arnold,et al.  Finite element differential forms , 2007 .

[18]  D. Arnold,et al.  NONCONFORMING MIXED ELEMENTS FOR ELASTICITY , 2003 .

[19]  J. Thomas,et al.  Equilibrium finite elements for the linear elastic problem , 1979 .

[20]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[21]  D. Arnold,et al.  Finite element exterior calculus, homological techniques, and applications , 2006, Acta Numerica.

[22]  Shaochun Chen,et al.  Conforming Rectangular Mixed Finite Elements for Elasticity , 2011, J. Sci. Comput..

[23]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[24]  Jay Gopalakrishnan,et al.  A Second Elasticity Element Using the Matrix Bubble , 2012 .

[25]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[26]  Douglas N. Arnold,et al.  Finite elements for symmetric tensors in three dimensions , 2008, Math. Comput..

[27]  Gerard Awanou Symmetric Matrix Fields in the Finite Element Method , 2010, Symmetry.

[28]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[29]  Johnny Guzmán A Unified Analysis of Several Mixed Methods for Elasticity with Weak Stress Symmetry , 2010, J. Sci. Comput..

[30]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[31]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..