Solid-State Qubits: 3D Integration and Packaging

Quantum processing has the potential to transform the computing landscape by enabling efficient solutions to problems that are intractable using classical processors. The field was sparked by a suggestion from physicist Richard Feynman in 1981 that a controllable quantum system can be used to simulate other quantum systems, such as the energy band structure of complex materials or the chemical reaction rates of intricate molecules. In the 1990s, interest in quantum computing grew rapidly with the introduction of the first quantum "killer app"-the potential of a large-scale quantum processor to break certain types of public encryption schemes [1]. Recently, there has been growing consensus that myriad other fields besides data security could be impacted by the development of a quantum processor, including machine learning [2], many optimization problems [3], and Feynman's original idea of the simulation of materials properties [4]. In recent years, the field has progressed rapidly, but many technical challenges must be overcome before a large-scale quantum processor can be built. This article focuses on the development of packaging for solid-state qubits and the use of 3D integration to address this challenge.

[1]  Alexander Opremcak,et al.  Digital Coherent Control of a Superconducting Qubit , 2018, Physical Review Applied.

[2]  R. J. Schoelkopf,et al.  Micromachined integrated quantum circuit containing a superconducting qubit , 2016, 1611.02166.

[3]  Luigi Frunzio,et al.  Black-box superconducting circuit quantization. , 2012, Physical review letters.

[4]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[5]  I. Siddiqi,et al.  A near–quantum-limited Josephson traveling-wave parametric amplifier , 2015, Science.

[6]  Jens Koch,et al.  Controlling the spontaneous emission of a superconducting transmon qubit. , 2008, Physical review letters.

[7]  Austin G. Fowler,et al.  High speed flux sampling for tunable superconducting qubits with an embedded cryogenic transducer , 2018, Superconductor Science and Technology.

[8]  John Clarke,et al.  Model for 1/f Flux noise in SQUIDs and Qubits. , 2007, Physical review letters.

[9]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[10]  Danna Rosenberg,et al.  Cryogenic Qubit Integration for Quantum Computing , 2018, 2018 IEEE 68th Electronic Components and Technology Conference (ECTC).

[11]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[12]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[13]  Detlef Beckmann,et al.  Fluxon readout of a superconducting qubit. , 2013, Physical review letters.

[14]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[15]  Erik Lucero,et al.  Minimizing quasiparticle generation from stray infrared light in superconducting quantum circuits , 2011 .

[16]  Thomas Purdy,et al.  Bidirectional and efficient conversion between microwave and optical light , 2014 .

[17]  Martin Kiffner,et al.  Coherent Microwave-to-Optical Conversion via Six-Wave Mixing in Rydberg Atoms. , 2017, Physical review letters.

[18]  Jerry M Chow,et al.  High coherence plane breaking packaging for superconducting qubits , 2017, Quantum science and technology.

[19]  A. Inamdar,et al.  Multi-${\rm J}_{\rm c}$ (Josephson Critical Current Density) Process for Superconductor Integrated Circuits , 2009, IEEE Transactions on Applied Superconductivity.

[20]  Chad Rigetti,et al.  Superconducting Through-Silicon Vias for Quantum Integrated Circuits , 2017, 1708.02226.

[21]  B. Vlastakis,et al.  Calibration of a Cross-Resonance Two-Qubit Gate Between Directly Coupled Transmons , 2019, Physical Review Applied.

[22]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[23]  S. Hunklinger,et al.  Saturation of the dielectric absorption of vitreous silica at low temperatures , 1977 .

[24]  Sarah Sheldon,et al.  Characterization of hidden modes in networks of superconducting qubits , 2017, 1703.04501.

[25]  R. J. Schoelkopf,et al.  Multilayer microwave integrated quantum circuits for scalable quantum computing , 2015, npj Quantum Information.

[26]  Amol Inamdar,et al.  Multi- (Josephson Critical Current Density) Process for Superconductor Integrated Circuits , 2009 .

[27]  W. Oliver,et al.  Materials in superconducting quantum bits , 2013 .

[28]  Jeanette M. Roberts,et al.  Die Design and Fabrication for Flip-Chip-Packaged Superconducting Quantum Processors , 2018 .

[29]  Michael J. Biercuk,et al.  The role of master clock stability in quantum information processing , 2016, npj Quantum Information.

[30]  David P. DiVincenzo,et al.  Blackbox quantization of superconducting circuits using exact impedance synthesis , 2014, 1403.7341.

[31]  L Frunzio,et al.  ac Stark shift and dephasing of a superconducting qubit strongly coupled to a cavity field. , 2005, Physical review letters.

[32]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[33]  John Clarke,et al.  Asymmetric frequency conversion in nonlinear systems driven by a biharmonic pump. , 2014, Physical review letters.

[34]  A. Wallraff,et al.  Engineering cryogenic setups for 100-qubit scale superconducting circuit systems , 2018, EPJ Quantum Technology.

[35]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[36]  Wayne Woods,et al.  Solid-state qubits integrated with superconducting through-silicon vias , 2019, 1912.10942.

[37]  Florian Nadel Experimental Techniques In Low Temperature Physics , 2016 .

[38]  Yang Yu,et al.  Extensible 3D architecture for superconducting quantum computing , 2017, 1705.02586.

[39]  Antonio Corcoles,et al.  Protecting superconducting qubits from radiation , 2011 .

[40]  H. Neven,et al.  Low-Depth Quantum Simulation of Materials , 2018 .

[41]  Morten Kjaergaard,et al.  Superconducting Qubits: Current State of Play , 2019, Annual Review of Condensed Matter Physics.

[42]  D. Yost,et al.  3D integrated superconducting qubits , 2017, 1706.04116.

[43]  Eric Smith,et al.  Experimental Techniques in Condensed Matter Physics at Low Temperatures , 1989 .

[44]  Telecommunications Board,et al.  Quantum computing , 2019, Mathematics and Computation.

[45]  E. Lucero,et al.  Qubit compatible superconducting interconnects , 2017, 1708.04270.

[46]  Frank K. Wilhelm,et al.  Optimal Qubit Control Using Single-Flux Quantum Pulses , 2015, 1512.05495.

[47]  J. R. Petta,et al.  Long-Range Microwave Mediated Interactions Between Electron Spins , 2019 .

[48]  R. McDermott,et al.  Accurate Qubit Control with Single Flux Quantum Pulses , 2014, 1408.0390.

[49]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[50]  Yu Chen,et al.  29.1 A 28nm Bulk-CMOS 4-to-8GHz ¡2mW Cryogenic Pulse Modulator for Scalable Quantum Computing , 2019, 2019 IEEE International Solid- State Circuits Conference - (ISSCC).

[51]  K. Lehnert,et al.  Design of an On-Chip Superconducting Microwave Circulator with Octave Bandwidth , 2018, Physical Review Applied.

[52]  Austin G. Fowler,et al.  Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket , 2016 .

[53]  S. Girvin,et al.  Charge-insensitive qubit design derived from the Cooper pair box , 2007, cond-mat/0703002.

[54]  Y. Pashkin,et al.  Coherent control of macroscopic quantum states in a single-Cooper-pair box , 1999, Nature.

[55]  Zijun Chen,et al.  Fabrication and characterization of aluminum airbridges for superconducting microwave circuits , 2013, 1310.2325.

[56]  D. DiVincenzo TOPICS IN QUANTUM COMPUTERS , 1996, cond-mat/9612126.

[57]  J I Colless,et al.  Modular cryogenic interconnects for multi-qubit devices. , 2014, The Review of scientific instruments.

[58]  Benjamin A. Mazin,et al.  Laminated NbTi-on-Kapton Microstrip Cables for Flexible Sub-Kelvin RF Electronics , 2018, IEEE Transactions on Applied Superconductivity.

[59]  Chad Rigetti,et al.  Superconducting Caps for Quantum Integrated Circuits , 2017, 1708.02219.

[60]  Erik Lucero,et al.  Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits , 2010, 1011.4982.

[61]  George A. Hernandez,et al.  Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications , 2016, 1606.04557.

[62]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[63]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[64]  R. Manenti,et al.  Double-sided coaxial circuit QED with out-of-plane wiring , 2017, 1703.05828.

[65]  William D. Oliver,et al.  Quantum computing takes flight , 2019, Nature.

[66]  Zijun Chen,et al.  A method for building low loss multi-layer wiring for superconducting microwave devices , 2018 .

[67]  J. Clarke,et al.  The flux qubit revisited to enhance coherence and reproducibility , 2015, Nature Communications.

[68]  Andrew W. Cross,et al.  Validating quantum computers using randomized model circuits , 2018, Physical Review A.

[69]  L. DiCarlo,et al.  Scalable Quantum Circuit and Control for a Superconducting Surface Code , 2016, 1612.08208.