C

We present an updated version of SKIRT, a three-dimensional (3D) Monte Carlo radiative transfer code developed to simulate dusty galaxies. The main novel characteristics of the SKIRT code are the use of a stellar foam to generate random positions, an efficient combination of eternal forced scattering and continuous absorption, and a new library approach that links the radiative transfer code to the DustEM dust emission library. This approach enables a fast, accurate, and self-consistent calculation of the dust emission of arbitrary mixtures of transiently heated dust grains and polycyclic aromatic hydrocarbons, even for full 3D models containing millions of dust cells. We have demonstrated the accuracy of the SKIRT code through a set of simulations based on the edge-on spiral galaxy UGC 4754. The models we ran were gradually refined from a smooth, two-dimensional, local thermal equilibrium (LTE) model to a fully 3D model that includes non-LTE (NLTE) dust emission and a clumpy structure of the dusty interstellar medium. We find that clumpy models absorb UV and optical radiation less efficiently than smooth models with the same amount of dust, and that the dust in clumpy models is on average both cooler and less luminous. Our simulations demonstrate that, given the appropriate use of optimization techniques, it is possible to efficiently and accurately run Monte Carlo radiative transfer simulations of arbitrary 3D structures of several million dust cells, including a full calculation of the NLTE emission by arbitrary dust mixtures.

[1]  A. Lagrange Direct imaging of exoplanets , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  大澤 亮 日本天文学会 早川幸男基金による渡航報告書 : IAU Symposium 283 : Planetary Nebulae, an Eye to the Future , 2011 .

[3]  E. Alfaro,et al.  ERRATUM: “THE FRACTAL DIMENSION OF STAR-FORMING REGIONS AT DIFFERENT SPATIAL SCALES IN M33” (2010, ApJ, 720, 541) , 2010 .

[4]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[5]  Edwin A. Valentijn,et al.  The Future of Photometric, Spectrophotometric and Polarimetric Standardization , 2007 .

[6]  Raúl Rueda,et al.  Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support by P. C. Gregory. Hardcover: 486 pages. Cambridge University Press. ISBN: 052184150X, $75.00 , 2007 .

[7]  T. Bastian,et al.  The Green Bank Solar Radio Burst Spectrometer , 2005 .

[8]  Tetsuya Sakurai,et al.  The Solar-B Mission and the Forefront of Solar Physics , 2004 .

[9]  Richard McMahon,et al.  CIRPASS: description, performance, and astronomical results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[10]  E. Landi Degl'Innocenti,et al.  Polarization in spectral lines , 2004 .

[11]  Achim Gandorfer,et al.  The Second Solar Spectrum - A high spectral resolution polarimetric survey of scattering polarization near the solar limb in graphical representation. Vol. III: 3160 Ã… to 3915 Ã… , 2002 .

[12]  M. Sigwarth Advanced Solar Polarimetry—Theory, Observation, and Instrumentation: The 20th NSO/Sacramento Peak Summer Workshop , 2001 .

[13]  Ian R. Parry,et al.  CIRPASS: a NIR integral field and multi-object spectrograph , 2000, Astronomical Telescopes and Instrumentation.

[14]  Paul S. Bradley,et al.  Refining Initial Points for K-Means Clustering , 1998, ICML.

[15]  G. A. Gurzadyan,et al.  The Physics and Dynamics of Planetary Nebulae , 1997 .

[16]  Matthew Pressman In press , 1995, TESOL Quarterly.

[17]  N. Caine :Mountain Environments: An Examination of the Physical Geography of Mountains , 1991 .

[18]  C. M. Budwine,et al.  Institute of geophysics and planetary physics , 1991 .

[19]  William H. Press,et al.  Numerical recipes , 1990 .

[20]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae , 1976 .

[21]  G. Seber The estimation of animal abundance and related parameters , 1974 .

[22]  C. Krebs Ecology: The Experimental Analysis of Distribution and Abundance , 1973 .

[23]  C. J. Everett,et al.  A practical manual on the Monte Carlo method for random walk problems , 1960 .

[24]  Yvonne Jaeger,et al.  Turbulence: An Introduction for Scientists and Engineers , 2015 .

[25]  S. Fliescher,et al.  The Pierre Auger Collaboration , 2011 .

[26]  W. Salas,et al.  Methane and Nitrous Oxide Emissions from Natural Sources , 2010 .

[27]  Hiroyuki Mito,et al.  The IRSA 2MASS all-sky point source catalog , 2008 .

[28]  Jean-Luc Starck,et al.  Astronomical Data Analysis , 2007 .

[29]  Phil Gregory,et al.  Bayesian Logical Data Analysis for the Physical Sciences: Probability theory as extended logic , 2005 .

[30]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[31]  Janis Alnis,et al.  The Hanle effect and level crossing spectroscopy in Rb vapour under strong laser excitation , 2003 .

[32]  S. Pottasch ASYMMETRICAL PLANETARY NEBULAE , 1995 .

[33]  R. Terlevich Violent Star Formation: From 30 Doradus to QSOs , 1994 .

[34]  P. Edwards,et al.  GENLN2: A general line-by-line atmospheric transmittance and radiance model. Version 3.0: Description and users guide , 1992 .

[35]  P. MacNeice,et al.  Electromechanical coupling of the solar atmosphere; Proceedings of the OSL Workshop, Capri, Italy, May 27-31, 1991 , 1992 .

[36]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .

[37]  T. Andersen Optical specifications and performance of the Nordic 2.5 M Telescope , 1985 .

[38]  J. Audouze Nucleosynthesis and Chemical Evolution of Galaxies , 1983 .

[39]  A. Bruzek,et al.  Illustrated glossary for solar and solar-terrestrial physics , 1977 .

[40]  G. Vaucouleurs,et al.  Reference catalogue of bright galaxies , 1964 .

[41]  N. Herlofson,et al.  Particle Diffusion in the Radiation Belts , 1962 .