Filtered density function simulator on unstructured meshes

A new computational filtered density function (FDF) methodology is developed for large eddy simulation (LES) of turbulent reacting flows. This methodology is based on a Lagrangian Monte Carlo (MC) FDF solver constructed on a domain portrayed by an unstructured mesh. The base filtered transport equations on this mesh are solved by a finite-volume (FV) method. The consistency of the hybrid FV-MC solver and the realizability of the simulated results are demonstrated via LES of a temporally developing mixing layer. The overall performance of the model is appraised by comparison with direct numerical simulation (DNS) data. The algorithmic implementation in the commercial software ANSYS-FLUENT facilitates future FDF-LES of turbulent combustion in complex configurations.

[1]  Salvador Navarro-Martinez,et al.  Large eddy simulation of autoignition with a subgrid probability density function method , 2007 .

[2]  Heinz Pitsch,et al.  Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion , 2005 .

[3]  D. Haworth,et al.  Probability density function approach for multidimensional turbulentflow calculations with application to in-cylinder flows in reciprocating engines , 1991 .

[4]  W. P. Jones,et al.  Large eddy simulation of hydrogen auto-ignition with a probability density function method , 2007 .

[5]  Peyman Givi,et al.  Filtered Density Function for Subgrid Scale Modeling of Turbulent Combustion , 2006 .

[6]  Genong Li,et al.  An effective particle tracing scheme on structured/unstructured grids in hybrid finite volume/PDF Monte Carlo methods , 2001 .

[7]  Jing Chen,et al.  A Eulerian PDF scheme for LES of nonpremixed turbulent combustion with second-order accurate mixture fraction , 2007 .

[8]  E. O'brien,et al.  The probability density function (pdf) approach to reacting turbulent flows , 1980 .

[9]  Stephen B. Pope,et al.  Filtered mass density function for large-eddy simulation of turbulent reacting flows , 1999, Journal of Fluid Mechanics.

[10]  E. Renshaw,et al.  STOCHASTIC DIFFERENTIAL EQUATIONS , 1974 .

[11]  Peyman Givi,et al.  Developments in Formulation and Application of the Filtered Density Function , 2006 .

[12]  Stephen B. Pope,et al.  Velocity-scalar filtered density function for large eddy simulation of turbulent flows , 2003 .

[13]  W. P. Jones,et al.  A probability density function Eulerian Monte Carlo field method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia D) , 2006 .

[14]  S. James,et al.  Large eddy simulations of turbulent flames using the filtered density function model , 2007 .

[15]  Chong M. Cha,et al.  A subgrid-scale mixing model for large-eddy simulations of turbulent reacting flows using the filtered density function , 2003 .

[16]  Jose C. F. Pereira,et al.  Large Eddy Simulation (2D) of a Reacting Plane Mixing Layer Using Filtered Density Function Closure , 2000 .

[17]  Stephen B. Pope,et al.  Computations of turbulent combustion: Progress and challenges , 1991 .

[18]  Stephen B. Pope,et al.  Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows , 2009 .

[19]  Ugo Piomelli,et al.  Large-eddy simulation: achievements and challenges , 1999 .

[20]  József Bakosi,et al.  A non-hybrid method for the PDF equations of turbulent flows on unstructured grids , 2008, J. Comput. Phys..

[21]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[22]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[23]  Stephen B. Pope,et al.  Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D) , 2004 .

[24]  Jos Derksen,et al.  Turbulent mixing in a tubular reactor: Assessment of an FDF/LES approach , 2005 .

[25]  P. Moin,et al.  The basic equations for the large eddy simulation of turbulent flows in complex geometry , 1995 .

[26]  Stephen B. Pope,et al.  Numerical integration of stochastic differential equations: weak second-order mid-point scheme for application in the composition PDF method , 2003 .

[27]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[28]  Robert W. Bilger,et al.  Future progress in turbulent combustion research , 2000 .

[29]  Paul E. DesJardin,et al.  A filtered mass density function approach for modeling separated two-phase flows for LES I: Mathematical formulation , 2006 .

[30]  Joseph C. Oefelein,et al.  Scalar filtered mass density functions in nonpremixed turbulent jet flames , 2007 .

[31]  Stephen B. Pope,et al.  Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows , 2007 .

[32]  E. Sparrow,et al.  Handbook of Numerical Heat Transfer , 1988 .

[33]  D. C. Haworth,et al.  A probability density function method for turbulent mixing and combustion on three-dimensional unstructured deforming meshes , 2000 .

[34]  Asghar Afshari,et al.  Large-Eddy Simulations of Turbulent Flows in an Axisymmetric Dump Combustor , 2008 .

[35]  M. Darwish,et al.  A NEW HIGH-RESOLUTION SCHEME BASED ON THE NORMALIZED VARIABLE FORMULATION , 1993 .

[36]  Stefan Heinz,et al.  On Fokker–Planck Equations for Turbulent Reacting Flows. Part 2. Filter Density Function for Large Eddy Simulation , 2003 .

[37]  S. Pope,et al.  Velocity filtered density function for large eddy simulation of turbulent flows , 2000 .

[38]  I. Gihman,et al.  Stochastic Differential Equations , 1975 .

[39]  Stephen B. Pope,et al.  A particle formulation for treating differential diffusion in filtered density function methods , 2006, J. Comput. Phys..

[40]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[41]  Stefan Heinz,et al.  Unified turbulence models for LES and RANS, FDF and PDF simulations , 2007 .

[42]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[43]  Peyman Givi,et al.  Large Eddy Simulation of Heat and Mass Transport in Turbulent Flows , 2009 .

[44]  J Mathew,et al.  Filtered density function for large eddy simulation of turbulent reacting flows , 2008 .

[45]  B. Geurts,et al.  Realizability conditions for the turbulent stress tensor in large-eddy simulation , 1994, Journal of Fluid Mechanics.

[46]  Heinz Pitsch,et al.  A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry , 2007 .

[47]  R. W. Bilger,et al.  Turbulent flows with nonpremixed reactants , 1980 .