Kinetics of the interaction of amphipathic α-helical peptides with phosphatidylcholines

[1]  M. H. Payne,et al.  Examination of the peptide sequence requirements for lipid-binding. Alternative pathways for promoting the interaction of amphipathic alpha-helical peptides with phosphatidylcholine. , 1991, Biochimica et biophysica acta.

[2]  L. McLean,et al.  Minimal peptide length for interaction of amphipathic alpha-helical peptides with phosphatidylcholine liposomes. , 1991, Biochemistry.

[3]  L. McLean,et al.  Effect of micelle diameter on tryptophan dynamics in an amphipathic helical peptide in phosphatidylcholine. , 1989, Biochemistry.

[4]  L. McLean,et al.  Short model peptides having a high α‐helical tendency: Design and solution properties , 1989 .

[5]  J. B. Massey,et al.  Apolipoproteins C-I, C-II, and C-III: kinetics of association with model membranes and intermembrane transfer. , 1988, Biochemistry.

[6]  L. McLean,et al.  Probucol reduces the rate of association of apolipoprotein C-III with dimyristoylphosphatidylcholine. , 1988, Biochimica et biophysica acta.

[7]  A. Argiolas,et al.  Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. , 1985, The Journal of biological chemistry.

[8]  E. Kaiser,et al.  Amphiphilic secondary structure: design of peptide hormones. , 1984, Science.

[9]  J. Segrest,et al.  Studies of synthetic peptide analogs of the amphipathic helix. Effect of charged amino acid residue topography on lipid affinity. , 1980, The Journal of biological chemistry.

[10]  A. Gotto,et al.  Lipid-protein interactions in the plasma lipoproteins. , 1977, Biochimica et biophysica acta.

[11]  H. Hauser,et al.  Lateral compressibility and penetration into phospholipid monolayers and bilayer membranes , 1975, Nature.