Robust and optimal multi-iterative techniques for IgA Galerkin linear systems

We consider fast solvers for the large linear systems coming from the Isogeometric Analysis (IgA) collocation approximation based on B-splines of full elliptic d-dimensional Partial Differential Equations (PDEs). We are interested in designing iterative algorithms which are optimal and robust. The former property implies that the computational cost is linear with respect to the number of degrees of freedom (i.e. the matrix size). The latter property means that the convergence rate is completely independent of (or only mildly dependent on) all the relevant parameters: in our setting, we can mention the coefficients of the PDE, the dimensionality d, the geometric map G describing the physical domain, the matrix size (related to the fineness parameters), and the spline degrees (associated with the IgA approximation order). Our approach is based on the spectral symbol, which describes the global eigenvalue behavior of the IgA collocation matrices. It is precisely the spectral information contained in the symbol that is exploited for the design of an optimal and robust multi-iterative solver of multigrid type. Several numerical experiments are presented and discussed in view of recent theoretical findings concerning the symbol and its properties.

[1]  Arno B. J. Kuijlaars,et al.  Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..

[2]  S. Serra,et al.  Multi-iterative methods , 1993 .

[3]  J. Kraus,et al.  Algebraic multilevel preconditioning in isogeometric analysis: Construction and numerical studies , 2013, 1304.0403.

[4]  Stefano Serra Capizzano,et al.  On the Asymptotic Spectrum of Finite Element Matrix Sequences , 2007, SIAM J. Numer. Anal..

[5]  Stefano Serra,et al.  The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems , 1999 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  William F. Trench,et al.  Properties of unilevel block circulants , 2009 .

[8]  Hendrik Speleers,et al.  Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..

[9]  E. L. Ortiz,et al.  Error analysis of the Tau Method: Dependence of the error on the degree and on the length of the interval of approximation , 1993 .

[10]  Alessandro Reali,et al.  Isogeometric Collocation: Cost Comparison with Galerkin Methods and Extension to Adaptive Hierarchical NURBS Discretizations , 2013 .

[11]  Estimates for the minimum eigenvalue and the condition number of Hermitian (block) Toeplitz matrices , 2013 .

[12]  Stefano Serra Capizzano,et al.  Analysis of preconditioning strategies for collocation linear systems , 2003 .

[13]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[14]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[15]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[16]  Arno B. J. Kuijlaars,et al.  Convergence Analysis of Krylov Subspace Iterations with Methods from Potential Theory , 2006, SIAM Rev..

[17]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[18]  J. Kraus,et al.  Multigrid methods for isogeometric discretization , 2013, Computer methods in applied mechanics and engineering.

[19]  Hendrik Speleers,et al.  On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.

[20]  Stefano Serra Capizzano,et al.  Multigrid Methods for Symmetric Positive Definite Block Toeplitz Matrices with Nonnegative Generating Functions , 1996, SIAM J. Sci. Comput..

[21]  Luca F. Pavarino,et al.  BDDC PRECONDITIONERS FOR ISOGEOMETRIC ANALYSIS , 2013 .

[22]  Stefano Serra Capizzano,et al.  Convergence analysis of two-grid methods for elliptic Toeplitz and PDEs Matrix-sequences , 2002, Numerische Mathematik.

[23]  Stefano Serra Capizzano The rate of convergence of Toeplitz based PCG methods for second order nonlinear boundary value problems , 1999, Numerische Mathematik.

[24]  Stefano Serra Capizzano,et al.  On the Regularizing Power of Multigrid-type Algorithms , 2005, SIAM J. Sci. Comput..

[25]  Stefano Serra,et al.  Multigrid methods for toeplitz matrices , 1991 .

[26]  Eugene E. Tyrtyshnikov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: On the distribution of eigenvectors of Toeplitz matrices with weakened requirements on the generating function , 1997 .

[27]  A. Böttcher,et al.  On the condition numbers of large semidefinite Toeplitz matrices , 1998 .

[28]  Marco Donatelli,et al.  A V-cycle Multigrid for multilevel matrix algebras: proof of optimality , 2007, Numerische Mathematik.

[29]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[30]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[31]  Giancarlo Sangalli,et al.  BPX-preconditioning for isogeometric analysis , 2013 .

[32]  L. Hörmander,et al.  Pseudo-differential Operators and Non-elliptic Boundary Problems , 1966 .

[33]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[34]  Albrecht Böttcher,et al.  On the asymptotic behavior of the eigenvectors of large banded Toeplitz matrices , 2006 .

[35]  Stefano Serra,et al.  On the extreme eigenvalues of hermitian (block) toeplitz matrices , 1998 .

[36]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[37]  William F. Trench Properties of multilevel block α̲-circulants , 2009 .

[38]  Stefano Serra Capizzano,et al.  An ergodic theorem for classes of preconditioned matrices , 1998 .

[39]  Marco Donatelli,et al.  Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.

[40]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[41]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[42]  Stefano Serra Capizzano,et al.  Spectral Features and Asymptotic Properties for g-Circulants and g-Toeplitz Sequences , 2010, SIAM J. Matrix Anal. Appl..

[43]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[44]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[45]  Giuseppe Fiorentino,et al.  C. G. preconditioning for Toeplitz matrices , 1993 .

[46]  Hendrik Speleers,et al.  Spectral analysis of matrices in isogeometric collocation methods , 2014 .

[47]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[48]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[49]  O. Axelsson Iterative solution methods , 1995 .

[50]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[51]  Carlo Garoni Structured matrices coming from PDE approximation theory: spectral analysis, spectral symbol and design of fast iterative solvers. , 2015 .

[52]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[53]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .

[54]  Marco Donatelli,et al.  An algebraic generalization of local Fourier analysis for grid transfer operators in multigrid based on Toeplitz matrices , 2010, Numer. Linear Algebra Appl..

[55]  Luca F. Pavarino,et al.  Isogeometric Schwarz preconditioners for linear elasticity systems , 2013 .

[56]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[57]  Stefano Serra-Capizzano,et al.  Multigrid Methods for Multilevel Circulant Matrices , 2005 .

[58]  Stefano Serra,et al.  On the extreme spectral properties of Toeplitz matrices generated byL1 functions with several minima/maxima , 1996 .

[59]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..