Bandwidth versus Bandsize

The bandwidth (bandsize) of a graph G is the minimum, over all bijections u: V(G) → {1,2,…,|V(G)|}, of the greatest difference (respectively the number of distinct differences) |u(v)—u(w)| for vw ɛ E(G). We show that a graph on n vertices with bandsize k has bandwidth between k and cn 1-1/n , and that this is best possible. In the process we obtain best possible asymptotic bounds on the bandwidth of circulant graphs. The bandwidth and bandsize of random graphs are also compared, the former turning out to be n — C 1 log n and the latter at least n —c 2 (logn) 2 .

[1]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[2]  Eitan M. Gurari,et al.  Improved Dynamic Programming Algorithms for Bandwidth Minimization and the MinCut Linear Arrangement Problem , 1984, J. Algorithms.

[3]  James B. Saxe,et al.  Dynamic-Programming Algorithms for Recognizing Small-Bandwidth Graphs in Polynomial Time , 1980, SIAM J. Algebraic Discret. Methods.

[4]  B. Bollobás The evolution of random graphs , 1984 .

[5]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[6]  Jonathan S. Turner Probabilistic analysis of bandwidth minimization algorithms , 1983, STOC '83.

[7]  Andrew M. Odlyzko,et al.  Bandwidths and profiles of trees , 1985, J. Comb. Theory, Ser. B.

[8]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[9]  Katherine Heinrich,et al.  On the problem of bandsize , 1987, Graphs Comb..

[10]  Reginald P. Tewarson,et al.  Row-column permutation of sparse matrices , 1967, Comput. J..

[11]  T. Apostol Modular Functions and Dirichlet Series in Number Theory , 1976 .

[12]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[13]  R. Plemmons,et al.  A Combined Direct-Iterative Method for Certain M-Matrix Linear Systems, , 1984 .

[14]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .

[15]  F. A. Akyuz,et al.  An automatic node-relabeling scheme for bandwidth minimization of stiffness matrices. , 1968 .

[16]  W. Vega On the Bandwidth of Random Graphs , 1983 .