On Godunov-Type Schemes for Magnetohydrodynamics

In the light of recent analytical results on the MHD Riemann problem, Godunov-type numerical schemes for magnetohydrodynamics (MHD) are revisited. As the first step, a model system that exactly preserves the MHD hyperbolic singularities is considered. For this model, analytical results on shock waves are summarized and critical problems occurring in developing shock-capturing methods are identified. Using the results, we propose a new way to define fluxes on cell interfaces. It consists of two solvers, one on the well-posed Riemann problem and another on the evolution of Alfven waves. Numerical experiments show that the new scheme is more efficient in calculating large-time solutions.

[1]  Klaus A. Hoffmann,et al.  Numerical solutions of ideal MHD equations for a symmetric blunt body at hypersonic speeds , 1998 .

[2]  R. Myong Analytical results on MHD intermediate shocks , 1997 .

[3]  P. Roe,et al.  Shock waves and rarefaction waves in magnetohydrodynamics. Part 1. A model system , 1997, Journal of Plasma Physics.

[4]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[5]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[6]  T. Kammash,et al.  Developing Numerical Fluxes with New Sonic Fix for MHD Equations , 1997 .

[7]  D. Anderson,et al.  A numerical investigation of a shock-tube-driven conductivity channel , 1996 .

[8]  B. Somov,et al.  Magnetohydrodynamic discontinuities in space plasmas: Interrelation between stability and structure , 1996 .

[9]  Nikolai V. Pogorelov,et al.  Shock-Capturing Approach and Nonevolutionary Solutions in Magnetohydrodynamics , 1996 .

[10]  Antonio Marquina,et al.  Capturing Shock Reflections , 1996 .

[11]  Kenneth G. Powell,et al.  A New Axisymmetric MHD Model of the Interaction of the Solar Wind with Venus , 1996 .

[12]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[13]  Paul R. Woodward,et al.  A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation laws , 1995 .

[14]  E. Pitman,et al.  A numerical study of a rotationally degenerate hyperbolic system. Part II. The Cauchy problem , 1995 .

[15]  Aslak Tveito,et al.  The Solution of Nonstrictly Hyperbolic Conservation Laws May Be Hard to Compute , 1995, SIAM J. Sci. Comput..

[16]  Paul R. Woodward,et al.  An approximate Riemann solver for ideal magnetohydrodynamics , 1994 .

[17]  T. Hada Evolution of large amplitude Alfvén waves in the solar wind with β∼1 , 1993 .

[18]  J. Chao,et al.  Observations of an intermediate shock in interplanetary space , 1993 .

[19]  M. Putten A numerical implementation of MHD in divergence form , 1993 .

[20]  E. Bruce Pitman,et al.  A numerical study of a rotationally degenerate hyperbolic system. Part I: The Riemann problem , 1992 .

[21]  L. O'Hare,et al.  Maneuvering a reentry body via magnetogasdynamic forces , 1992 .

[22]  Phillip Colella,et al.  A higher-order Godunov method for the equations of ideal magnetohydrodynamics , 1992 .

[23]  Philip L. Roe,et al.  Sonic Flux Formulae , 1992, SIAM J. Sci. Comput..

[24]  H. Freistühler Some remarks on the structure of intermediate magnetohydrodynamic shocks , 1991 .

[25]  Blake Temple,et al.  The Riemann problem near a hyperbolic singularity: the classification of solutions of quadratic Riemann problems 1 , 1988 .

[26]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[27]  C. Wu,et al.  On MHD intermediate shocks , 1987 .

[28]  Ami Harten,et al.  Self adjusting grid methods for one-dimensional hyperbolic conservation laws☆ , 1983 .

[29]  C. Conley,et al.  On the Structure of Magnetohydrodynamic Shock Waves. , 1974 .

[30]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .

[31]  P. Germain SHOCK WAVES AND SHOCK-WAVE STRUCTURE IN MAGNETO-FLUID DYNAMICS , 1960 .

[32]  S. I. Syrovtskii ON THE STABILITY OF SHOCK WAVES IN MAGNETOHYDRODYNAMICS , 1958 .

[33]  Peter Szmolyan,et al.  Existence and bifurcation of viscous profiles for all intermediate magnetohydrodynamic shock waves , 1995 .

[34]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[35]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[36]  P. Lax Hyperbolic systems of conservation laws II , 1957 .