InP HBT Transferred to Higher Thermal Conductivity Substrate

We report the first demonstration of an InP double heterojunction bipolar transistor (HBT) transferred to a higher thermal conductivity substrate. This process allows lithographic access to both the frontside and backside of the device to minimize parasitic capacitances while transfer to a SiC substrate should reduce junction temperature by 42%, allowing for higher current density operation. The 0.20 × 3 μm<sup>2</sup> emitter-area HBT has peak common-emitter current gain β = 22 and breakdown V<sub>BR</sub>,<sub>CEO</sub> >; 4 V. No electrical degradation from the transferred-substrate process is observed. RF measurements show device peak <i>f</i><sub>τ</sub> = 397 GHz, <i>f</i><sub>max</sub> ≥ 400 GHz, and maximum available gain (MAG) at 100 GHz is 15.3 dB.

[1]  J. Fastenau,et al.  InGaAs/InP DHBTs in a Dry-Etched Refractory Metal Emitter Process Demonstrating Simultaneous $f_{\tau}/f_{\max} \sim \hbox{430/800}\ \hbox{GHz}$ , 2011, IEEE Electron Device Letters.

[2]  W. Deal,et al.  235 GHz Amplifier Using 150 nm InP HBT High Power Density Transistor , 2011, IEEE Microwave and Wireless Components Letters.

[3]  A. Gutierrez,et al.  High-Speed InP HBT Technology for Advanced Mixed-signal and Digital Applications , 2007, 2007 IEEE International Electron Devices Meeting.

[4]  Amy W. K. Liu,et al.  200-nm InGaAs/InP type I DHBT employing a dual-sidewall emitter process demonstrating ƒmax ≫ 800 GHz and ƒτ = 360 GHz , 2009, 2009 IEEE International Conference on Indium Phosphide & Related Materials.

[5]  Mark J. W. Rodwell,et al.  Submicron scaling of HBTs , 2001 .

[6]  M. Rudolph,et al.  InP DHBT Process in Transferred-Substrate Technology With $f_{t}$ and $f_{\max}$ Over 400 GHz , 2009, IEEE Transactions on Electron Devices.

[7]  A. Gutierrez,et al.  172 GHz divide-by-two circuit using a 0.25-µm InP HBT technology , 2009, 2009 IEEE International Conference on Indium Phosphide & Related Materials.

[8]  V. Jain,et al.  130nm InP DHBTs with ft >0.52THz and fmax >1.1THz , 2011, 69th Device Research Conference.

[9]  Joe Zhou,et al.  Advanced Heterogeneous Integration of InP HBT and CMOS Si Technologies , 2010, 2010 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).