Closed-form expressions for the effective coefficients of fibre-reinforced composite with transversely isotropic constituents. I: Elastic and hexagonal symmetry

The purpose of this paper is to determine the effective elastic, piezoelectric and dielectric properties of reinforced piezoelectric composite materials with unidirectional cylindrical fibres periodically distributed in two directions at an angle π/3 by means of the asymptotic homogenization method. Each periodic cell of the medium is a binary piezoelectric composite wherein both constituents are homogeneous piezoelectric materials with transversely isotropic properties. This paper makes use of some results obtained in Part I. Relatively simple closed-form expressions for the overall properties are obtained by means of potential methods of a complex variable and Weierstrass elliptic and related functions. Schulgasser universal type of relations are derived in a simple new way by means of the homogenized asymptotic method. The number of local problems to get all coefficients is two. The numerical computation of these effective properties is simple.

[1]  Mechanics of porous media with phase transformations and periodical structures 1. Method of asymptotic averaging , 1998 .

[2]  Boundary Layer Problem in a Piezoelectric Composite , 1995 .

[3]  Biao Wang Effective Behavior of Piezoelectric Composites , 1994 .

[4]  Marco Avellaneda,et al.  Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium approach , 1998 .

[5]  K. Schulgasser Relationships between the effective properties of transversely isotropic piezoelectric composites , 1992 .

[6]  Tungyang Chen Piezoelectric properties of multiphase fibrous composites: Some theoretical results , 1993 .

[7]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[8]  I. S. Sokolnikoff Mathematical theory of elasticity , 1946 .

[9]  J. J. Telega,et al.  Homogenization and thermopiezoelectricity , 1992 .

[10]  Gérard A. Maugin,et al.  On the linear piezoelectricity of composite materials , 1991 .

[11]  Mechanics of porous media with phase transformations and periodical structures 2. Solutions of local and global problems , 1998 .

[12]  C. Nan Comment on “relationships between the effective properties of transversely isotropic piezoelectric composites” , 1993 .

[13]  T.E. Gomez,et al.  Piezocomposites of complex microstructure: theory and experimental assessment of the coupling between phases , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  W. A. Smith,et al.  Modeling 1-3 composite piezoelectrics: hydrostatic response , 1993, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  H. Chan,et al.  Electromechanical properties of 1-3 piezoelectric ceramic/piezoelectric polymer composites , 1994 .

[16]  B. A. Auld,et al.  Tailoring the Properties of Composite Piezoelectric Materials for Medical Ultrasonic Transducers , 1985, IEEE 1985 Ultrasonics Symposium.

[17]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[18]  Ahmad Safari,et al.  Overview of Fine‐Scale Piezoelectric Ceramic/Polymer Composite Processing , 1995 .

[19]  A. H. England,et al.  IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics : proceedings of the IUTAM-ISIMM symposium held in Nottingham, U.K., 30 August-3 September 1994 , 1995 .

[20]  A. Grekov,et al.  Effective properties of a transversely isotropic piezocomposite with cylindrical inclusions , 1989 .

[21]  A. Kalamkarov,et al.  Analysis, design, and optimization of composite structures , 1997 .

[22]  J. Bourgat Numerical experiments of the homogenization method , 1979 .

[23]  I. Andrianov,et al.  Perforated plates and shells , 2002 .

[24]  E. Hinton,et al.  A review of homogenization and topology opimization II—analytical and numerical solution of homogenization equations , 1998 .

[25]  Sang-Hoon Park,et al.  Asymptotic homogenization of viscoelastic composites with periodic microstructures , 1998 .

[26]  Engineering mechanics of composite structures , 1993 .

[27]  Salvatore Torquato,et al.  On the use of homogenization theory to design optimal piezocomposites for hydrophone applications , 1997 .

[28]  F. J. Sabina,et al.  Electromechanical properties of laminated piezoelectric composites , 1996 .

[29]  Y. Benveniste Exact results concerning the local fields and effective properties in piezoelectric composites , 1994 .

[30]  Shtrikman,et al.  Linear response of two-phase composites with cross moduli: Exact universal relations. , 1989, Physical review. A, General physics.

[31]  Alain Bourgeat,et al.  Asymptotic homogenization of laminated piezocomposite materials , 1998 .

[32]  J. Unsworth,et al.  Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications , 1989 .

[33]  Y. Benveniste,et al.  Uniform fields and universal relations in piezoelectric composites , 1992 .

[34]  N. Kikuchi,et al.  A comparison of homogenization and standard mechanics analyses for periodic porous composites , 1992 .

[35]  Leslie E. Cross,et al.  Flexible composite transducers , 1978 .

[36]  Shaker A. Meguid,et al.  Asymptotic homogenization of elastic composite materials with a regular structure , 1994 .

[37]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[38]  Chen Tungyang,et al.  Micromechanical estimates of the overall thermoelectroelastic moduli of multiphase fibrous composites , 1994 .

[39]  N. Kikuchi,et al.  A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. , 1994, Journal of biomechanics.

[40]  F. Montero de Espinosa,et al.  Modeling (2-2) piezocomposites partially sliced in the polymer phase , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[41]  F. M. E. Freijo,et al.  New constitutive relations for piezoelectric composites and porous piezoelectric ceramics , 1996 .

[42]  J. B. Castillero,et al.  Electromechanical properties of continuous fibre-reinforced piezoelectric composites , 1997 .

[43]  T. Ikeda Fundamentals of piezoelectricity , 1990 .

[44]  Noboru Kikuchi,et al.  Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method , 1998 .

[45]  G. Dvorak On uniform fields in heterogeneous media , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[46]  H. Banno Effects of Porosity on Dielectric, Elastic and Electromechanical Properties of Pb(Zr, Ti)O3 Ceramics with Open Pores: A Theoretical Approach , 1993 .

[47]  H. Chan,et al.  Piezoelectric Ceramic/Polymer Composites for High Frequency Applications , 1994 .

[48]  H. Banno Effects of shape and volume fraction of closed pores on dielectric, elastic, and electromechanical properties of dielectric and piezoelectric ceramics: a theoretical approach , 1987 .

[49]  R. Wojnar,et al.  Thermodiffusion in heterogeneous elastic solids and homogenization , 1994 .

[50]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[51]  Gilles A. Francfort,et al.  Homogenization and Linear Thermoelasticity , 1983 .

[52]  J. Pastor Homogenization of linear piezoelectric media , 1997 .

[53]  Martin L. Dunn,et al.  Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites , 1993 .