Fire regime and post-fire Normalized Difference Vegetation Index changes in the eastern Iberian peninsula (Mediterranean basin)

Fire occurrence in Mediterranean landscapes has been studied widely. Despite this, a specific monitor- ing of vegetation recovery after recurrent fires by means of satellite images has been developed to a lesser extent. With the use of Satellite Remote Sensing (SRS) techniques and multi-temporal Landsat images of the area of Ayora (287 700 ha) in Valencia (Eastern Spain), between the years 1984 and 1999, we studied the post-fire regeneration of the Normalized Difference Vegetation Index (NDVI) in areas subjected to different fire recurrences. Emphasis is given to the effect of time since fire, precipitation, and bedrock types on post-fire NDVI changes. Results suggest that for the first 7 years after a single fire, NDVI depends mainly on the time since fire (post-fire regeneration), whereas environmental parameters (precipitation and bedrock type) are of little relevance. After this period, precip- itation begins to have a direct influence on the NDVI. In patches burned twice, with fire intervals of 8 and 9 years, NDVI is also controlled by the time since fire. Furthermore, NDVI recovery is faster after the first fire than after the second fire, suggesting that fire recurrence has a negative impact on the resilience of these communities. Bedrock type did not show any effect on NDVI after fire. These findings contribute to the understanding of Mediterranean landscape dynamics and provide evidence for the usefulness of NDVI in post-fire regeneration assessment, and the possible negative effects of the increasing fire recurrences observed in the last decades.

[1]  K. Price,et al.  Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA , 2003 .

[2]  V. Prosper-Laget,et al.  A Satellite Index of Risk of Forest Fire Occurrence in Summer in the Mediterranean Area , 1998 .

[3]  Denis White,et al.  Assessing Risks to Biodiversity from Future Landscape Change , 1997 .

[4]  N. Koutsias,et al.  Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image , 2000 .

[5]  Howard E. Epstein,et al.  Spatial characteristics of AVHRR-NDVI along latitudinal transects in northern Alaska , 2002 .

[6]  A. K. Milne,et al.  The use of remote sensing in mapping and monitoring vegetational change associated with bushfire events in Eastern Australia , 1986 .

[7]  L. Trabaud,et al.  Diversity and stability in garrigue ecosystems after fire , 1980, Vegetatio.

[8]  O. Viedma,et al.  Modeling rates of ecosystem recovery after fires by using landsat TM data , 1997 .

[9]  F. Lloret,et al.  SATELLITE EVIDENCE OF DECREASING RESILIENCE IN MEDITERRANEAN PLANT COMMUNITIES AFTER RECURRENT WILDFIRES , 2002 .

[10]  Ana C. L. Sá,et al.  Regional-scale burnt area mapping in Southern Europe using NOAA-AVHRR 1 km data , 1999 .

[11]  J. Casasnovas,et al.  Teledetección : medio ambiente y cambio global , 2001 .

[12]  Juli G. Pausas Changes in Fire and Climate in the Eastern Iberian Peninsula (Mediterranean Basin) , 2004 .

[13]  S. Nicholson,et al.  The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall , 1994 .

[14]  William J. Ripple,et al.  Analysis of conifer forest regeneration using Landsat Thematic Mapper data , 1993 .

[15]  Mary C. Henry,et al.  Monitoring post-burn recovery of chaparral vegetation in southern California using multi-temporal satellite data , 1998 .

[16]  X. Pons,et al.  DETECCIÓN DE SUPERFICIES FORESTALES QUEMADAS EN CATALUÑA MEDIANTE IMÁGENES DE SATÉLITE DURANTE EL PERÍODO 1975-1995. APLICACIÓN PARA LA CARACTERIZACIÓN DEL RÉGIMEN DE INCENDIOS Y LOS PROCESOS DE REGENERACIÓN DE LA VEGETACIÓN , 1998 .

[17]  E. Chuvieco,et al.  Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping , 2005 .

[18]  E. Chuvieco Remote Sensing of Large Wildfires , 1999 .

[19]  Sharon E. Nicholson,et al.  On the relation between rainfall and the Normalized Difference Vegetation Index for diverse vegetation types in East Africa , 1993 .

[20]  Juli G. Pausas,et al.  Post-fire regeneration patterns in the eastern Iberian Peninsula , 1999 .

[21]  S Ramachandran,et al.  Application of Remote Sensing and Gis , 2022 .

[22]  J. Moody,et al.  Comparison of soil infiltration rates in burned and unburned mountainous watersheds , 2001 .

[23]  Juli G. Pausas,et al.  Post-fire regeneration variability of Pinus halepensis in the eastern Iberian Peninsula , 2004 .

[24]  J. Canadell,et al.  Resprouting vigour of two mediterranean shrub species after experimental fire treatments , 1991, Vegetatio.

[25]  Paul A. Keddy,et al.  North American Terrestrial Vegetation , 1988 .

[26]  Susana Bautista,et al.  Pines and oaks in the restoration of Mediterranean landscapes of Spain: New perspectives for an old practice — a review , 2004, Plant Ecology.

[27]  M. Vilà,et al.  Positive fire–grass feedback in Mediterranean Basin woodlands , 2001 .

[28]  Emilio Chuvieco,et al.  Assessment of vegetation regeneration after fire through multitemporal analysis of AVIRIS images in the Santa Monica Mountains , 2002 .

[29]  W. Ripple,et al.  Assessing wildfire effects with Landsat thematic mapper data , 1998 .

[30]  Gregory S. McMaster,et al.  Vegetation Change in Response to Extreme Events: The Effect of a Short Interval between Fires in California Chaparral and Coastal Scrub , 1983 .

[31]  F. Woodward,et al.  The global distribution of ecosystems in a world without fire. , 2004, The New phytologist.

[32]  Manuel Costa La vegetación y el paisaje en las tierras valencianas , 1999 .

[33]  R. C. Mcneil Vegetation and fire history of a Ponderosa pine-white fir forest in Crater Lake National Park , 1975 .

[34]  Alfonso Calera,et al.  Application of remote sensing and GIS to locate priority intervention areas after wildland fires in Mediterranean systems: a case study from south-eastern Spain , 2004 .

[35]  W. Setzer,et al.  Satellite Remote Sensing of Fires: Potential and Limitations , 1993 .

[36]  J. Agee Fire Ecology of Pacific Northwest Forests , 1993 .

[37]  Jon E. Keeley,et al.  PLANT FUNCTIONAL TRAITS IN RELATION TO FIRE IN CROWN-FIRE ECOSYSTEMS , 2004 .

[38]  W. Delitti,et al.  Effects of fire recurrence in Quercus coccifera L. shrublands of the Valencia Region (Spain): I. plant composition and productivity , 2005, Plant Ecology.

[39]  Dan Taylor,et al.  FIRE HISTORY OF A SEQUOIA-MIXED CONIFER FOREST' , 1979 .

[40]  Keeley,et al.  Reexamining fire suppression impacts on brushland fire regimes , 1999, Science.

[41]  F. J. García-Haro,et al.  A generalized soil-adjusted vegetation index , 2002 .

[42]  J. Cihlar,et al.  Hotspot and NDVI Differencing Synergy (HANDS): A New Technique for Burned Area Mapping over Boreal Forest , 2000 .

[43]  E. Kasischke,et al.  Estimating release of carbon from 1990 and 1991 forest fires in Alaska , 1995 .

[44]  J. R. Milford,et al.  Sahelian rangeland production in relation to rainfall estimates from Meteosat , 1993 .

[45]  Juli G. Pausas,et al.  Response of plant functional types to changes in the fire regime in Mediterranean ecosystems: A simulation approach , 1999 .

[46]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[47]  C. F. Lee,et al.  Characterization of rainfall-induced landslides , 2003 .

[48]  Louis Trabaud,et al.  Les feux de forêts : mécanismes, comportement et environnement , 1992 .

[49]  O. Viedma,et al.  Monitoring temporal changes in the spatial patterns of a Mediterranean shrubland using Landsat™ images , 1999 .