From x-ray telescopes to neutron scattering: Using axisymmetric mirrors to focus a neutron beam

Abstract We demonstrate neutron beam focusing by axisymmetric mirror systems based on a pair of mirrors consisting of a confocal ellipsoid and hyperboloid. Such a system, known as a Wolter mirror configuration, is commonly used in X-ray telescopes. The axisymmetric Wolter geometry allows nesting of several mirror pairs to increase collection efficiency. We implemented a system containing four nested Ni mirror pairs, which was tested by the focusing of a polychromatic neutron beam at the MIT Reactor. In addition, we have carried out extensive ray-tracing simulations of the mirrors and their performance in different situations. The major advantages of the Wolter mirrors are nesting for large angular collection and aberration-free performance. We discuss how these advantages can be utilized to benefit various neutron scattering methods, such as imaging, SANS, and time-of-flight spectroscopy.

[1]  Martin C. Weisskopf,et al.  The development of hard x-ray optics at MSFC , 2004, SPIE Optics + Photonics.

[2]  John D. Budai,et al.  Kirkpatrick–Baez microfocusing optics for thermal neutrons , 2005 .

[3]  Kim Lefmann,et al.  McStas, a general software package for neutron ray-tracing simulations , 1999 .

[4]  T. Brückel,et al.  X-ray space technology for focusing small-angle neutron scattering and neutron reflectometry , 2000 .

[5]  H. Wolter Spiegelsysteme streifenden Einfalls als abbildende Optiken für Röntgenstrahlen , 1952 .

[6]  M. J. Pivovaroff,et al.  Progress of focusing x-ray and gamma-ray optics for small animal imaging , 2005, SPIE Optics + Photonics.

[7]  N. Kardjilov,et al.  Phase-contrast radiography with a polychromatic neutron beam , 2004 .

[8]  T. Oku,et al.  Design and performance analyses of the new time-of-flight smaller-angle neutron scattering instrument at J-PARC , 2009 .

[9]  John D. Budai,et al.  High-performance Kirkpatrick-Baez supermirrors for neutron milli- and micro-beams , 2006 .

[10]  S. A. Werner,et al.  Imaging: Phase radiography with neutrons , 2000, Nature.

[11]  H. Chen-Mayer,et al.  Convergent-beam neutron crystallography , 2004 .

[12]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[13]  Kim Lefmann,et al.  McStas 1.7 - a new version of the flexible Monte Carlo neutron scattering package , 2004 .

[14]  Oberto Citterio,et al.  Hard x-ray Wolter-I telescope using broadband multilayer coatings on replica substrates: problems and solutions , 1995, Optics & Photonics.

[15]  T. Oku,et al.  Pulsed neutron beam control using a magnetic multiplet lens , 2009 .

[16]  Martin C. Weisskopf,et al.  Development of hard x-ray optics at MSFC , 2003, SPIE Astronomical Telescopes + Instrumentation.

[17]  M. Gubarev,et al.  An Evaluation of Grazing-Incidence Optics for Neutron Imaging , 2007 .

[18]  D. Mildner Resolution of small-angle neutron scattering with a refractive focusing optic , 2005 .

[19]  Brian D. Ramsey,et al.  Mandrel replication for hard x-ray optics using titanium nitride , 2009, Optical Engineering + Applications.

[20]  A. Michette X-ray microscopy , 1988 .

[21]  Peter Böni,et al.  New concepts for neutron instrumentation , 2008 .

[22]  P. Pani,et al.  GEMS: Underwater spectrometer for long-term radioactivity measurements , 2011 .

[23]  Alexandru D. Stoica,et al.  Multiple-stage tapered neutron guide as a broad band focusing system , 2004, SPIE Optics + Photonics.

[24]  R. Chase,et al.  Design Parameters of Paraboloid-Hyperboloid Telescopes for X-ray Astronomy. , 1972, Applied optics.

[25]  B. Aschenbach,et al.  X-ray telescopes , 1985 .

[26]  Richard H. Pantell,et al.  A simple neutron microscope using a compound refractive lens , 2002 .

[27]  Brian D. Ramsey,et al.  Replicated Nickel Optics for the Hard-X-Ray Region , 2006 .