A hybrid nanostructure array for gas sensing with ultralow field ionization voltage.

We fabricate a unique hybrid nanostructure array for gas sensing based on the polarization mechanism at the nanoscale. It is shown that with platinum nanocrystallites on the top of each nanoneedle, this array can work at ultralow voltages (less than 10 V) as a field ionization gas sensor. We believe that the polarized platinum brings about a local enhanced electrical field, leading to the direct field ionization of gas molecules, which is confirmed by calculations of the charge accumulation and electrical field distribution.

[1]  J. Eden,et al.  Carbon nanotube-enhanced performance of microplasma devices , 2004 .

[2]  L. Hau,et al.  Field Ionization of Cold Atoms Near the Wall of a Single Carbon Nanotube , 2010 .

[3]  Mojtaba Kahrizi,et al.  A novel miniature gas ionization sensor based on freestanding gold nanowires , 2007 .

[4]  Toh-Ming Lu,et al.  Field ionization of argon using β-phase W nanorods , 2004 .

[5]  Chee Lip Gan,et al.  Self-organization of a hybrid nanostructure consisting of a nanoneedle and nanodot. , 2012, Small.

[6]  Fa-Gung Fan,et al.  Nanoscale discharge electrode for minimizing ozone emission from indoor corona devices. , 2010, Environmental science & technology.

[7]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[8]  B. Cai,et al.  Direct current dielectric barrier discharges under voltages below the ionization potential of neutrals in electrode systems with one-dimensional nanostructures , 2011 .

[9]  B. Cai,et al.  Mechanism of gas breakdown near Paschen's minimum in electrodes with one-dimensional nanostructures , 2009 .

[10]  David J. H. Cockayne,et al.  Self-organization of nanoneedles in Fe/GaAs (001) epitaxial thin film , 2006 .

[11]  Fanli Meng,et al.  A novel highly sensitive gas ionization sensor for ammonia detection , 2009 .

[12]  M. Islam,et al.  Ultralow-voltage field-ionization discharge on whiskered silicon nanowires for gas-sensing applications. , 2011, Nature materials.

[13]  Shun Mao,et al.  Vertically oriented graphene sheets grown on metallic wires for greener corona discharges: lower power consumption and minimized ozone emission , 2011 .

[14]  H. Saka,et al.  SIDE-WALL DAMAGE IN A TRANSMISSION ELECTRON MICROSCOPY SPECIMEN OF CRYSTALLINE SI PREPARED BY FOCUSED ION BEAM ETCHING , 1999 .

[15]  J. Jefferson,et al.  Characterisation of tungsten nano-wires prepared by electron and ion beam induced chemical vapour deposition , 2006 .

[16]  Jörg Ingo Baumbach,et al.  Ion mobility spectrometer for online monitoring of trace compounds , 2002 .

[17]  B. Cai,et al.  MEMS-based microelectrode system incorporating carbon nanotubes for ionization gas sensing , 2007 .

[18]  Chang-Yong Nam,et al.  Microstructure and Composition of Focused‐Ion‐Beam‐Deposited Pt Contacts to GaN Nanowires , 2006 .

[19]  E. Nasser Fundamentals of gaseous ionization and plasma electronics , 1971 .

[20]  B. Cai,et al.  Ar, O2, CHF3, and SF6 plasma treatments of screen-printed carbon nanotube films for electrode applications , 2008 .