Multivariate Archimedean copulas, $d$-monotone functions and $\ell_1$-norm symmetric distributions

It is shown that a necessary and sufficient condition for an Archimedean copula generator to generate a $d$-dimensional copula is that the generator is a $d$-monotone function. The class of $d$-dimensional Archimedean copulas is shown to coincide with the class of survival copulas of $d$-dimensional $\ell_1$-norm symmetric distributions that place no point mass at the origin. The $d$-monotone Archimedean copula generators may be characterized using a little-known integral transform of Williamson [Duke Math. J. 23 (1956) 189--207] in an analogous manner to the well-known Bernstein--Widder characterization of completely monotone generators in terms of the Laplace transform. These insights allow the construction of new Archimedean copula families and provide a general solution to the problem of sampling multivariate Archimedean copulas. They also yield useful expressions for the $d$-dimensional Kendall function and Kendall's rank correlation coefficients and facilitate the derivation of results on the existence of densities and the description of singular components for Archimedean copulas. The existence of a sharp lower bound for Archimedean copulas with respect to the positive lower orthant dependence ordering is shown.

[1]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[2]  D. Varberg Convex Functions , 1973 .

[3]  E. Luciano,et al.  Copula methods in finance , 2004 .

[4]  Christian Genest,et al.  Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données , 1986 .

[5]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[6]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[7]  Stuart A. Klugman,et al.  Fitting bivariate loss distributions with copulas , 1999 .

[8]  Tibère Popoviciu,et al.  Les fonctions convexes , 1944 .

[9]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[10]  Tibère Popoviciu Sur quelques propriétés des fonctions d'une ou de deux variables réelles , 1933 .

[11]  R. Williamson Multiply monotone functions and their Laplace transforms , 1956 .

[12]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[13]  P. J. Schonbucher Credit Derivatives Pricing Models , 2003 .

[14]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[15]  Edwin Hewitt,et al.  Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable , 1965 .

[16]  C. Genest,et al.  A characterization of gumbel's family of extreme value distributions , 1989 .

[17]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[18]  Marco Scarsini,et al.  Archimedean copulae and positive dependence , 2005 .

[19]  Marius Hofert,et al.  Sampling Archimedean copulas , 2008, Comput. Stat. Data Anal..

[20]  Kai-Tai Fang,et al.  Some families of multivariate symmetric distributions related to exponential distribution , 1988 .

[21]  C. Genest,et al.  The Joy of Copulas: Bivariate Distributions with Uniform Marginals , 1986 .

[22]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[23]  Roger B. Nelsen,et al.  Some properties of Schur-constant survival models and their copulas , 2005 .

[24]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[25]  C. Kimberling A probabilistic interpretation of complete monotonicity , 1974 .

[26]  H. Joe Multivariate models and dependence concepts , 1998 .

[27]  On the existence almost everywhere of the cross partial derivatives , 1967 .

[28]  Marco Scarsini,et al.  On measures of concordance , 1984 .

[29]  D. Oakes,et al.  Bivariate survival models induced by frailties , 1989 .

[30]  Hlawka Theory of the integral , 1939 .

[31]  A. McNeil Sampling nested Archimedean copulas , 2008 .

[32]  Ralph P. Boas,et al.  Functions with positive differences , 1940 .

[33]  Bruno Rémillard,et al.  On Kendall's Process , 1996 .

[34]  D. Clayton A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence , 1978 .

[35]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[36]  J. M. Anderson,et al.  REGULAR VARIATION (Encyclopaedia of Mathematics and Its Applications 27) , 1988 .

[37]  D. Oakes Multivariate survival distributions , 1994 .

[38]  R. Výborný,et al.  Some Remarks on Functions with One-Sided Derivatives , 1986 .

[39]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[40]  S. Kotz,et al.  Symmetric Multivariate and Related Distributions , 1989 .

[41]  J. Hoffmann-jorgensen,et al.  Probability with a View Toward Statistics , 1994 .

[42]  J. Geluk Π-regular variation , 1981 .