A generalization of Panjer’s recursion and numerically stable risk aggregation

Portfolio credit risk models as well as models for operational risk can often be treated analogously to the collective risk model coming from insurance. Applying the classical Panjer recursion in the collective risk model can lead to numerical instabilities, for instance if the claim number distribution is extended negative binomial or extended logarithmic. We present a generalization of Panjer’s recursion that leads to numerically stable algorithms. The algorithm can be applied to the collective risk model, where the claim number follows, for example, a Poisson distribution mixed over a generalized tempered stable distribution with exponent in (0,1). De Pril’s recursion can be generalized in the same vein. We also present an analogue of our method for the collective model with a severity distribution having mixed support.

[1]  B. Jørgensen Statistical Properties of the Generalized Inverse Gaussian Distribution , 1981 .

[2]  Richard Warnung,et al.  A comparison of loss aggregation methods for operational risk , 2008 .

[3]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions, 2nd edition , 2004 .

[4]  Thomas Mikosch,et al.  Non-Life Insurance Mathematics: An Introduction with Stochastic Processes , 2006 .

[5]  Stuart A. Klugman,et al.  Loss Models: From Data to Decisions , 1998 .

[6]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[7]  Shaun S. Wang,et al.  Further Results on Hesselager's Recursive Procedure for Calculation of some Compound Distributions , 1994 .

[8]  Gordon E. Willmot,et al.  Sundt and Jewell's Family of Discrete Distributions , 1988, ASTIN Bulletin.

[9]  John G. M. Schoenmakers,et al.  Numerically Stable Computation of CreditRisk , 2004 .

[10]  Harry H. Panjer,et al.  Recursive Evaluation of a Family of Compound Distributions , 1981, ASTIN Bulletin.

[11]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[12]  Klaus D. Schmidt,et al.  An Extension of Panjer's Recursion , 2002, ASTIN Bulletin.

[13]  J. Rosínski Tempering stable processes , 2007 .

[14]  Gerry Leversha,et al.  Foundations of modern probability (2nd edn), by Olav Kallenberg. Pp. 638. £49 (hbk). 2002. ISBN 0 387 95313 2 (Springer-Verlag). , 2004, The Mathematical Gazette.

[15]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[16]  O. Kallenberg Foundations of Modern Probability , 2021, Probability Theory and Stochastic Modelling.

[17]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[18]  Klaus D. Schmidt Lectures on risk theory , 1996 .

[19]  Paul Embrechts,et al.  S.A. Klugman, H.H. Panjer and G.E. Willmot (1998): Loss Models: From Data to Decisions. Wiley, New York , 1998, ASTIN Bulletin.

[20]  William Breedlove,et al.  Society of Actuaries , 2018, The Grants Register 2019.

[21]  Harry H. Panjer,et al.  Insurance Risk Models , 1992 .

[22]  R. Ambagaspitiya A family of discrete distributions , 1995 .

[23]  E. C. Maceda On the Compound and Generalized Poisson Distributions , 1948 .

[24]  Michael B. Gordy Saddlepoint approximation of CreditRisk , 2002 .

[25]  Moments of a class of compound distributions , 1986 .

[26]  H. Gould Coefficient Identities for Powers of Taylor and Dirichlet Series , 1974 .

[27]  M. Eisen,et al.  Probability and its applications , 1975 .

[28]  B. Sundt On some Extensions of Panjer's Class of Counting Distributions , 1992, ASTIN Bulletin.

[29]  Ole Hesselager A Recursive Procedure for Calculation of some Compound Distributions , 1994, ASTIN Bulletin.

[30]  William S. Jewell,et al.  Further Results on Recursive Evaluation of Compound Distributions , 1981, ASTIN Bulletin.

[31]  F. Lehrbass,et al.  CreditRisk[+] in the banking industry , 2004 .

[32]  Harry H. Panjer,et al.  Difference equation approaches in evaluation of compound distributions , 1987 .

[33]  A. W. Kemp,et al.  Univariate Discrete Distributions: Johnson/Univariate Discrete Distributions , 2005 .

[34]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[35]  G. Willmot,et al.  Mixed Compound Poisson Distributions , 1986, ASTIN Bulletin.

[36]  Shaun S. Wang,et al.  On the Stability of Recursive Formulas , 1993 .

[37]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[38]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[39]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[40]  L. Euler Introductio in analysin infinitorum , 1967 .

[41]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[42]  K. Knight Stable Non-Gaussian Random Processes Gennady Samorodnitsky and Murad S. Taqqu Chapman and Hall, 1994 , 1997, Econometric Theory.